[
Al-Taie, H. A. H. & Kadhim, N. S. (2023). The Effect of Power Sources in the Agricultural Tractor and the Developed Sprayer System on the Performance of the Electrical and Mechanical Sprayer System and some Performance Indicators of the Engine. IOP Conference Series: Earth and Environmental Science, 1262(9). https://doi.org/10.1088/1755-1315/1262/9/092005.
]Search in Google Scholar
[
ASABE. (2009). Spray nozzle classification by droplet spectra. ANSI/ASAE S572.1 W/Corr.1, 2009.
]Search in Google Scholar
[
Bissell, D., Lai, W., Stegmeir, M., Troolin, D., Pothos, S. & Lengsfeld, C. (2014). An approach to spray characterization by combination of measurement techniques. In ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems. Portland.
]Search in Google Scholar
[
Bueno, M. R., Cunha, J. P. A. R. da & de Santana, D. G. (2017). Assessment of spray drift from pesticide applications in soybean crops. Biosystems Engineering, 154. https://doi.org/10.1016/j.biosystemseng.2016.10.017.
]Search in Google Scholar
[
Carter, O. W., Prostko, E. P. & Davis, J. W. (2017). The Influence of Nozzle Type on Peanut Weed Control Programs. Peanut Science, 44(2). https://doi.org/10.3146/ps17-4.1.
]Search in Google Scholar
[
Creech, C. F., Henry, R. S., Fritz, B. K. & Kruger, G. R. (2015). Influence of Herbicide Active Ingredient, Nozzle Type, Orifice Size, Spray Pressure, and Carrier Volume Rate on Spray Droplet Size Characteristics. Weed Technology, 29(2). https://doi.org/10.1614/wt-d-14-00049.1
]Search in Google Scholar
[
Creech, C. F., Moraes, J. G., Henry, R. S., Luck, J. D. & Kruger, G. R. (2016). The Impact of Spray Droplet Size on the Efficacy of 2,4-D, Atrazine, Chlorimuron-Methyl, Dicamba, Glufosinate, and Saflufenacil. Weed Technology, 30(2). https://doi.org/10.1614/wt-d-15-00034.1.
]Search in Google Scholar
[
Dorr, G. J., Hewitt, A. J., Adkins, S. W., Hanan, J., Zhang, H. & Noller, B. (2013). A comparison of initial spray characteristics produced by agricultural nozzles. Crop Protection, 53. https://doi.org/10.1016/j.cropro.2013.06.017.
]Search in Google Scholar
[
Farias, M. A. G. L., Raetano, C. G., Chechetto, R. G., Ferreira-Filho, P. J., Guerreiro, J. C., Bonini, C. S. B., Prado, E. P. (2020). Spray nozzles and droplet size effects on soybean canopy deposits and stink bugs control in west region of São Paulo state - Brazil. Phytoparasitica, 48(2). https://doi.org/10.1007/s12600-020-00786-8.
]Search in Google Scholar
[
Ferguson, J. C., Chauhan, B. S., Chechetto, R. G., Hewitt, A. J., Adkins, S. W., Kruger, G. R. & O’Donnell, C. C. (2019). Droplet-size effects on control of chloris spp. with Six POST herbicides. Weed Technology, 33(1). https://doi.org/10.1017/wet.2018.99.
]Search in Google Scholar
[
Ferguson, J. C., Chechetto, R. G., Adkins, S. W., Hewitt, A. J., Chauhan, B. S., Kruger, G. R. & O’Donnell, C. C. (2018). Effect of spray droplet size on herbicide efficacy on four winter annual grasses. Crop Protection, 112. https://doi.org/10.1016/j.cropro.2018.05.020.
]Search in Google Scholar
[
Ferguson, J. C., Chechetto, R. G., Hewitt, A. J., Chauhan, B. S., Adkins, S. W., Kruger, G. R. & O’Donnell, C. C. (2016). Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Protection, 81, 14-19. https://doi.org/10.1016/j.cropro.2015.11.013
]Search in Google Scholar
[
Ferreira, P. H. U., Thiesen, L. V., Pelegrini, G., Ramos, M. F. T., Pinto, M. M. D. & da Costa Ferreira, M. (2020). Physicochemical properties, droplet size and volatility of dicamba with herbicides and adjuvants on tank-mixture. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75996-5.
]Search in Google Scholar
[
Lafferty, C. L. & Tian, L. F. (2013). The impacts of pre-orifice and air-inlet design features on nozzle performance. https://doi.org/10.13031/2013.7343.
]Search in Google Scholar
[
Li, S., Chen, C., Wang, Y., Kang, F. & Li, W. (2021). Study on the atomization characteristics of flat fan nozzles for pesticide application at low pressures. Agriculture (Switzerland), 11(4). https://doi.org/10.3390/agriculture11040309.
]Search in Google Scholar
[
Liao, J., Hewitt, A. J., Wang, P., Luo, X., Zang, Y., Zhou, Z., O’donnell, C. (2019). Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests. International Journal of Agricultural and Biological Engineering, 12(6). https://doi.org/10.25165/j.ijabe.20191206.5014.
]Search in Google Scholar
[
Liao, J., Luo, X., Wang, P., Zhou, Z., O’Donnell, C. C., Zang, Y. & Hewitt, A. J. (2020). Analysis of the influence of different parameters on droplet characteristics and droplet size classification categories for air induction nozzle. Agronomy, 10(2). https://doi.org/10.3390/agronomy10020256
]Search in Google Scholar
[
McGinty, J., Baumann, P., Hoffmann, W. & Fritz, B. (2016). Evaluation of the Spray Droplet Size Spectra of Drift-reducing Agricultural Spray Nozzle Designs. American Journal of Experimental Agriculture, 11(3). https://doi.org/10.9734/ajea/2016/23785.
]Search in Google Scholar
[
Meyer, C. J., Norsworthy, J. K., Kruger, G. R. & Barber, T. L. (2016). Effect of Nozzle Selection and Spray Volume on Droplet Size and Efficacy of Engenia Tank-Mix Combinations. Weed Technology, 30(2). https://doi.org/10.1614/wt-d-15-00141.1.
]Search in Google Scholar
[
Milanowski, M., Subr, A., Combrzyński, M., Różańska-Boczula, M. & Parafiniuk, S. (2022a). Effect of Adjuvant, Concentration and Water Type on the Droplet Size Characteristics in Agricultural Nozzles. Applied Sciences (Switzerland), 12(12), 5821. https://doi.org/10.3390/app12125821.
]Search in Google Scholar
[
Milanowski, M., Subr, A. & Parafiniuk, S. (2022b). Evaluation of Different Internal Designs of Hydraulic Nozzles under an Accelerated Wear Test. Applied Sciences (Switzerland), 12(2). https://doi.org/10.3390/app12020889.
]Search in Google Scholar
[
Parafiniuk, S., Milanowski, M., Subr, A. & Krawczuk, A. (2017). Influence of surface tension of water on droplet size produced by flat jet nozzles. 295–300. https://doi.org/10.24326/fmpmsa.2017.53.
]Search in Google Scholar
[
Spraying Systems Co. (2014). TeeJet technologies, Catalogue 51A-M. Wheaton. Wheaton, Illinois USA.
]Search in Google Scholar
[
Subr, A., Al-Ahmadi, A. & Abbas, M. (2020). Effect of nozzle type and some locally used surfactants on the spray quality. Iraqi Journal of Agricultural Sciences, 51(3), 856-864. https://doi.org/10.36103/ijas.v51i3.1040
]Search in Google Scholar
[
Subr, A. K., Alheidary, M. H. R. & Al-Ahmadi, A. H. (2019). The informatics adequacy on the spraying technology in Iraqi agricultural researches: A literature review. Journal of Physics: Conference Series, 1294(9), 092007. https://doi.org/10.1088/1742-6596/1294/9/092007.
]Search in Google Scholar
[
Vieira, B. C., Butts, T. R., Rodrigues, A. O., Golus, J. A., Schroeder, K. & Kruger, G. R. (2018). Spray particle drift mitigation using field corn (Zea mays L.) as a drift barrier. Pest Management Science, 74(9). https://doi.org/10.1002/ps.5041.
]Search in Google Scholar
[
Xiao, L., Zhu, H., Wallhead, M., Horst, L., Ling, P. & Krause, C. R. (2018). Characterization of biological pesticide deliveries through hydraulic nozzles. Transactions of the ASABE, 61(3). https://doi.org/10.13031/trans.12698.
]Search in Google Scholar
[
Yao, W., Lan, Y., Hoffmann, W. C., Li, J., Guo, S., Zhang, H. & Wang, J. (2020). Droplet size distribution characteristics of aerial nozzles by Bell206L4 helicopter under medium and low airflow velocity wind tunnel conditions and field verification test. Applied Sciences (Switzerland), 10(6). https://doi.org/10.3390/app10062179.
]Search in Google Scholar
[
Yates, W. E., Cowden, R. E. & Akesson, N. B. (1985). Drop size spectra from nozzles in high-speed airstreams. Transactions of the American Society of Agricultural Engineers, 28(2). https://doi.org/10.13031/2013.32268.
]Search in Google Scholar