C. Pabinger, H. Lothaller, N. Portner, A. Geissler, Projections of hip arthroplasty in OECD countries up to 2050, HIP Int. 28 (2018) 498–506. https://doi.org/10.1177/1120700018757940Search in Google Scholar
W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact. Mater. 2 (2017) 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007Search in Google Scholar
J. Raphel, M. Holodniy, S.B. Goodman, S.C. Heilshorn, Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants, Biomaterials. 84 (2016) 301–314. https://doi.org/10.1016/j.biomaterials.2016.01.016Search in Google Scholar
Swiss National Hip & Knee Joint Registry Report, Swiss Society of Orthopaedics and Traumatology, Basel, 2021.Search in Google Scholar
B. Lindeque, Z. Hartman, A. Noshchenko, M. Cruse, Infection After Primary Total Hip Arthroplasty, Orthopedics. 37 (2014) 257–265. https://doi.org/10.3928/01477447-20140401-08Search in Google Scholar
C. Guder, S. Gravius, C. Burger, D.C. Wirtz, F.A. Schildberg, Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System, Front. Immunol. 11 (2020). https://doi.org/10.3389/fimmu.2020.00058Search in Google Scholar
B.H. Kapadia, R.A. Berg, J.A. Daley, J. Fritz, A. Bhave, M.A. Mont, Periprosthetic joint infection, Lancet. 387 (2016) 386–394. https://doi.org/10.1016/S0140-6736(14)61798-0Search in Google Scholar
S. Hogan, N.T. Stevens, H. Humphreys, J.P. O’Gara, E. O’Neill, Current and Future Approaches to the Prevention and Treatment of Staphylococcal Medical Device-Related Infections, Curr. Pharm. Des. 21 (2014) 100–113. https://doi.org/10.2174/1381612820666140905123900Search in Google Scholar
Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, Antibacterial surface design of biomedical titanium materials for orthopedic applications, J. Mater. Sci. Technol. 78 (2021) 51–67. https://doi.org/10.1016/j.jmst.2020.10.066Search in Google Scholar
H.Y. Ahmadabadi, K. Yu, J.N. Kizhakkedathu, Surface modification approaches for prevention of implant associated infections, Colloids Surf. B Biointerfaces. 193 (2020) 111116. https://doi.org/10.1016/j.colsurfb.2020.111116Search in Google Scholar
D. Alontseva, B. Azamatov, Y. Safarova (Yantsen), S. Voinarovych, G. Nazenova, A Brief Review of Current Trends in the Additive Manufacturing of Orthopedic Implants with Thermal Plasma-Sprayed Coatings to Improve the Implant Surface Biocompatibility, Coatings. 13 (2023) 1175. https://doi.org/10.3390/coatings13071175Search in Google Scholar
А.А. Meleshko, A.G. Afinogenova, G.E. Afinogenov, A.A. Spiridonova, V.P. Tolstoy, Аntibacterial inorganic agents: efficiency of using multicomponent systems, Russ. J. Infect. Immun. 10 (2020) 639–654. http://dx.doi.org/10.15789/2220-7619-AIA-1512Search in Google Scholar
V. Vishwakarma, G. Kaliaraj, K. Amirtharaj Mosas, Multifunctional Coatings on Implant Materials—A Systematic Review of the Current Scenario, Coatings. 13 (2022) 69. https://doi.org/10.3390/coatings13010069Search in Google Scholar
J. Wilson, Metallic biomaterials, in: Fundamental Biomaterials: Metals, Elsevier, 2018, pp. 1–33. https://doi.org/10.1016/B978-0-08-102205-4.00001-5Search in Google Scholar
D. Alontseva, Y. Safarova (Yantsen), S. Voinarovych, A. Obrosov, R. Yamanoglu, F. Khoshnaw, et al., Biocompatibility and Corrosion of Microplasma-Sprayed Titanium and Tantalum Coatings versus Titanium Alloy, Coatings. 14 (2024) 206. https://doi.org/10.3390/coatings14020206Search in Google Scholar
Z. Ding, Q. Zhou, Y. Wang, Z. Ding, Y. Tang, Q. He, Microstructure and properties of monolayer, bilayer and multilayer Ta2O5-based coatings on biomedical Ti-6Al-4V alloy by magnetron sputtering, Ceram. Int. 47 (2021) 1133–1144. https://doi.org/10.1016/j.ceramint.2020.08.230Search in Google Scholar
T.C. Senocak, K.V. Ezirmik, F. Aysin, N. Simsek Ozek, S. Cengiz, Niobium-oxynitride coatings for biomedical applications: Its antibacterial effects and in-vitro cytotoxicity, Mater. Sci. Eng. C 120 (2021) 111662. https://doi.org/10.1016/j.msec.2020.111662Search in Google Scholar
S. Zhao, S. Liu, Y. Xue, N. Li, K. Xu, W. Qiu, et al., Microstructure and properties of monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings deposited on biomedical Ti-6Al-4V alloy by magnetron sputtering, Coatings 13 (2023) 1234. https://doi.org/10.3390/coatings13071234Search in Google Scholar
V. Stranak, H. Wulff, P. Ksirova, C. Zietz, S. Drache, M. Cada, et al., Ionized vapor deposition of antimicrobial Ti–Cu films with controlled copper release, Thin Solid Films 550 (2014) 389–394. https://doi.org/10.1016/j.tsf.2013.11.001Search in Google Scholar
A. Bahrami, J.P. Álvarez, O. Depablos-Rivera, R. Mirabal-Rojas, A. Ruíz-Ramírez, S. Muhl, S.E. Rodil, Compositional and Tribo-Mechanical Characterization of Ti-Ta Coatings Prepared by Confocal Dual Magnetron Co-Sputtering, Adv. Eng. Mater. 20(3) (2018). https://doi.org/10.1002/adem.201700687Search in Google Scholar
G.A. Norambuena, R. Patel, M. Karau, C.C. Wyles, P.J. Jannetto, K.E. Bennet, et al., Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study, Clin. Orthop. Relat. Res. 475(3) (2017) 722–32. https://doi.org/10.1007/s11999-016-4713-7Search in Google Scholar
D. Wojcieszak, M. Osekowska, D. Kaczmarek, B. Szponar, M. Mazur, P. Mazur, et al., Influence of Material Composition on Structure, Surface Properties and Biological Activity of Nanocrystalline Coatings Based on Cu and Ti, Coatings 10(4) (2020) 343.Search in Google Scholar
A. Bahrami, C.F. Onofre Carrasco, A.D. Cardona, T. Huminiuc, T. Polcar, S.E. Rodil, Mechanical properties and microstructural stability of CuTa/Cu composite coatings, Surf. Coat. Technol. 364 (2019) 22–31. https://doi.org/10.1016/j.surfcoat.2019.02.072Search in Google Scholar
A. Wang, I.P. Jones, G. Landini, J. Mei, Y.Y. Tse, Y.X. Li, et al., Backscattered electron imaging and electron backscattered diffraction in the study of bacterial attachment to titanium alloy structure, J. Microsc. 270(1) (2018) 53–63. https://doi.org/10.1111/jmi.12649Search in Google Scholar
E.A. Lewallen, W.H. Trousdale, R. Thaler, J.J. Yao, W. Xu, J.M. Denbeigh, et al., Surface Roughness of Titanium Orthopedic Implants Alters the Biological Phenotype of Human Mesenchymal Stromal Cells., Tissue Eng. Part A 27(23–24) (2021) 1503–16. https://doi.org/10.1089/ten.TEA.2020.0369Search in Google Scholar
B. Jahani, X. Wang, The Effects of Surface Roughness on the Functionality of Ti13Nb13Zr Orthopedic Implants, Biomed. J. Sci. Tech. Res. 38(1) (2021). https://doi.org/10.26717/BJSTR.2021.38.006104Search in Google Scholar
I. Ilievska, V. Ivanova, D. Dechev, N. Ivanov, M. Ormanova, M.P. Nikolova, et al., Influence of Thickness on the Structure and Biological Response of Cu-O Coatings Deposited on cpTi, Coatings 14(4) (2024) 455. https://doi.org/10.3390/coatings14040455Search in Google Scholar
C. Zietz, A. Fritsche, B. Finke, V. Stranak, M. Haenle, R. Hippler, et al., Analysis of the Release Characteristics of Cu-Treated Antimicrobial Implant Surfaces Using Atomic Absorption Spectrometry, Bioinorg. Chem. Appl. 2012 (2012) 1–5. https://doi.org/10.1155/2012/850390Search in Google Scholar
M. Walczak, K. Pasierbiewicz, M. Szala, Effect of Ti6Al4V Substrate Manufacturing Technology on the Properties of PVD Nitride Coatings, Acta Phys. Pol. A 142 (6) (2023) 723. https://doi.org/10.12693/APhysPolA.142.723Search in Google Scholar
M. Jażdżewska, B. Majkowska-Marzec, A. Zieliński, R. Ostrowski, A. Frączek, G. Karwowska, J.M. Olive, Mechanical Properties and Wear Susceptibility Determined by Nanoindentation Technique of Ti13Nb13Zr Titanium Alloy after “Direct Laser Writing”. Materials, 16(13), (2023) 4834. https://doi.org/10.3390/ma16134834Search in Google Scholar
Y.C. Liu, T.W. Xu, B.Q. Su, B.J. Lv, H. Wang, Effect of strontium-doped coating prepared by microarc oxidation and hydrothermal treatment on apatite induction ability of Ti13Nb13Zr alloy in vitro, J. Mater. Res. 37 (16) (2022) 2657-2685. 10.1557/s43578-022-00626-xSearch in Google Scholar
K. Piotrowska, M. Madej, J. Kowalczyk, K. Radoń-Kobus, The ınfluence of envıronmental condıtıons on the trıbologıcal propertıes of the Ti13Nb13Zr alloy, Metalurgija, 63 (1) (2024) 53-56.Search in Google Scholar
S. Chowdhury, N. Arunachalam, Surface functionalization of additively manufactured titanium alloy for orthopaedic implant applications, J. Manuf. Process., 102 (2023) 387-405. 10.1016/j.jmapro.2023.07.015Search in Google Scholar
V. Hutsaylyuk, M. Wachowski, B. Kovalyuk, V. Mocharskyi, O. Sitkar, L. Śnieżek, J. Zygmuntowicz, Mechanical properties of titanium grade 1 after laser shock wave treatment. Advances in Materials Science, 23(4) (2023) 48-61. https://doi.org/10.2478/adms-2023-0022Search in Google Scholar
M. Jażdżewska, B. Majkowska-Marzec, R. Ostrowski, J.M. Olive, Influence of surface laser treatment on mechanical properties and residual stresses of titanium and its alloys. Adv. Sci. Technol. Res. J., 17 (6) (2023) 27-38. https://doi.org/10.12913/22998624/172981Search in Google Scholar
Implants for surgery - Metallic materials - Part 3: Wrought titanium 6-aluminium 4-vanadium alloy, ISO.org, 2016.Search in Google Scholar
B.N. Azamatov, D.L. Alontseva, A.A. Borisov, B. Maratuly, V.B. Ogay, A.A. Kurmanbaev, Magnetron sputtering on titanium alloy substrates of copper films with antibacterial properties against pseudomonas and staphylococcus, Bulletin of D. Serikbayev EKTU. 3 (2022) 40-51. https://doi.org/10.51885/1561-4212_2022_3_40Search in Google Scholar
W.C. Oliver, G.M. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583. https://doi.org/10.1557/JMR.1992.1564Search in Google Scholar
E. Avcu, Y. Yıldıran Avcu, F.E. Baştan, M.A.U. Rehman, F. Üstel, A.R. Boccaccini, Tailoring the surface characteristics of electrophoretically deposited chitosan-based bioactive glass composite coatings on titanium implants via grit blasting, Prog. Org. Coat. 123 (2018) 362–73. https://doi.org/10.1016/j.porgcoat.2018.07.021Search in Google Scholar
W. Qin, L.Fu,, T. Xie, J. Zhu, W.Yang, D. Li, L. Zhou, Abnormal hardness behavior of Cu-Ta films prepared by magnetron sputtering, J. Alloys Compd. 708 (2017) 1033-1037.Search in Google Scholar
G.Skordaris, K. D. Bouzakis, T.Kotsanis, P. Charalampous, E. Bouzakis, O. Lemmer, S. Bolz, Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools, Surf. Coat. Technol. 307 (2016) 452-460.Search in Google Scholar
Verein-Deutscher-Ingenieure 1992 Daimler Benz Adhesion Test VDI 3198 (Dusseldorf: VDI Verlag) p. 7.Search in Google Scholar
V. Kuibida, P.Kokhanets, V. Lopatynska, Mechanism of strengthening the skeleton using plyometrics, J. Phys. Educ. Sport. 21 (7) (2021). https://doi.org/10.7752/jpes.2021.03166Search in Google Scholar
N. Hezil, L. Aissani, M. Fellah, M. Abdul Samad, A. Obrosov, C. Timofei, E. Marchenko, Structural, and tribological properties of nanostructured α + β type titanium alloys for total hip, J. Mater. Res. Technol. 19 (2022) 3568–3578. https://doi.org/10.1016/j.jmrt.2022.06.042Search in Google Scholar
Biological evaluation of medical devices, ISO 10993, 2009. Available from: IHS.Search in Google Scholar