Cite

Marur P., Tippur H., Evaluation of Mechanical Properties of Functionally Graded Materials. Journal of Testing and Evaluation 26, 6, 539-545, 1998. https://doi.org/10.1520/JTE12112JSearch in Google Scholar

Marur PR, Tippur H.V., Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. International Journal of Solids and Structures, 37, 38, 5353-5370, 2000. https://doi.org/10.1016/S0020-7683(99)00207-3Search in Google Scholar

Rousseau C.E, Tippur H.V., Compositionally graded materials with cracks normal to the elastic gradient. Acta Materialia, 48(16), 4021-4033, 2000. https://doi.org/10.1016/S1359-6454(00)00202-0Search in Google Scholar

Carpinteri A, Paggi M, Pugno N., An analytical approach for fracture and fatigue in functionally graded materials. International Journal of Fracture, (47), 141-535. 2006. https://doi.org/10.1007/s10704-006-9012-ySearch in Google Scholar

Tilbrook M.T., Rutgers L, Moon R.J., Hoffman M. Fatigue crack propagation resistance in homogeneous and graded alumina-epoxy composites. International Journal of Fatigue, (29), 158–67, 2007. https://doi.org/10.1016/j.ijfatigue.2006.01.015Search in Google Scholar

Bhardwaj G, Singh I.V., Mishra B.K., Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Computer Methods in Applied Mechanics and Engineering, (284), 186–229, 2015. https://doi.org/10.1016/j.cma.2014.08.015Search in Google Scholar

Bhardwaj G., Singh I.V., Mishra B.K., Bui T.Q., Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Composite Structures, (126), 347–359, 2015. https://doi.org/10.1016/j.compstruct.2015.02.066Search in Google Scholar

Ferreira A.D., Novoa P.R., Marques A.T., Multifunctional Material Systems: A state-of-the-art review. Composite Structures, 151, 3-35, 2016. https://doi.org/10.1016/j.compstruct.2016.01.028Search in Google Scholar

Swaminathan K., Sangeetha D.M., Thermal analysis of FGM plates - A critical review of various modeling techniques and solution methods. Composite Structures, 160, 43-60, 2017. https://doi.org/10.1016/j.compstruct.2016.10.047Search in Google Scholar

Ozturk M., Erdogan F., Mode I crack problem in an inhomogeneous orthotropic medium. International Journal of Engineering Science, 35, 9, 869-883, 1997. https://doi.org/10.1016/S0020-7225(97)80005-5Search in Google Scholar

Ozturk M., Erdogan F., The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium. International Journal of Fracture, 98, 243–261, 1999. https://doi.org/10.1023/A:1018352203721Search in Google Scholar

Gu P., Dao M., Asaro R.J., A Simplified Method for Calculating the Crack-Tip Field of Functionally Graded Materials Using the Domain Integral. Journal of Applied Mechanics, 66(1), 101-108, 1999. https://doi.org/10.1115/1.2789135Search in Google Scholar

Kumar B., Sharm K., Kumar D., Evaluation of Stress Intensity Factor in Functionally Graded Material (FGM) Plate under Mechanical Loading. December 2015. Conference: The Indian Society of Theoretical and Applied Mechanics (ISTAM)At: MNIT, JAIPURVolume: 58th Conference: Indian Society of Theoretical and Applied MechanicsSearch in Google Scholar

Kim J.H., Paulino G.H., The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. International Journal of Solids and Structures, 40, 3967-4001, 2003. https://doi.org/10.1016/S0020-7683(03)00176-8Search in Google Scholar

Kim J.H., Paulino G.H., On Fracture Criteria for Mixed-Mode Crack Propagation in Functionally Graded Materials. Mechanics of Advanced Materials and Structures, 14, 227–244, 2007 https://doi.org/10.1080/15376490600790221Search in Google Scholar

Gu P., Asaro R.J., Cracks in functionally graded materials. International Journal of Solids and Structures, 34(1), 1-17, 1997. https://doi.org/10.1016/0020-7683(95)00289-8Search in Google Scholar

Dag S., Ilhan K.A., Mixed-mode fracture analysis of orthotropic functionally graded material coatings using analytical and computational methods. Journal of Applied Mechanics, 75(5) :051104, 2008. https://doi.org/10.1115/1.2932098Search in Google Scholar

Hosseini S.S., Bayesteh H., Mohammadi S., Thermo-mechanical XFEM crack propagation analysis of functionally graded materials. Materials Science & Engineering A, 561, 285–302, 2013. https://doi.org/10.1016/j.msea.2012.10.043Search in Google Scholar

Rao B.N., Rahman S., Mesh-free analysis of cracks in isotropic functionally graded materials. Engineering Fracture Mechanics. 70, 1, 1-27, 2003. https://doi.org/10.1016/S0013-7944(02)00038-3Search in Google Scholar

Gayen D., Tiwari R., Chakraborty D., Static and dynamic analyses of cracked functionally graded structural components: A review. Composites Part B: Engineering, 173: 106982, 2019. https://doi.org/10.1016/j.compositesb.2019.106982.Search in Google Scholar

Belytschko T., Black T., Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45, 601–620, 1999. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5Search in Google Scholar

Singh I.V., Mishra B.K., Bhattacharya S., Patil R.U., The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue, 36, 109–119, 2012. https://doi.org/10.1016/j.ijfatigue.2011.08.010Search in Google Scholar

Walters M.C., Paulino G.H., Dodds R.H., Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading. International Journal of Solids and Structures, 41, 1081–118, 2004. https://doi.org/10.1016/j.ijsolstr.2003.09.050Search in Google Scholar

Yildirim B., Dag S., Erdogan F., Three-dimensional fracture analysis of FGM coatings under thermomechanical loading. International Journal of Fracture, 132, 369–395, 2005. https://doi.org/10.1007/s10704-005-2527-9Search in Google Scholar

Walters M.C., Paulino G.H., Dodds R.H., Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids. Journal of Engineering Mechanics, 132, 1–15, 2006. https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-399(2006)Search in Google Scholar

Ayhan A.O., Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements. International Journal of Solids and Structures, 44, 8579–8599, 2007. https://doi.org/10.1016/j.ijsolstr.2007.06.022Search in Google Scholar

Ayhan A.O., Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements. International Journal of Solids and Structures, 46, 796–810, 2009. https://doi.org/10.1016/j.ijsolstr.2008.09.026Search in Google Scholar

Sladek J., Sladek V., Solek P., Elastic analyses in 3D anisotropic functionally graded solids by the MLPG. CMES: Computer Modeling in Engineering & Sciences, 43, 223–252, 2009. doi:10.3970/cmes.2009.043.223Search in Google Scholar

Zhang C., Cui M., Wang J., Gao X.W., Sladek J., Sladek V., 3D crack analysis in functionally graded materials. Engineering Fracture Mechanics, 78(3), 585–604, 2011. https://doi.org/10.1016/j.engfracmech.2010.05.017Search in Google Scholar

Eischen J.W., Fracture of nonhomogeneous materials. International Journal of Fracture, 34, 3-22, 1987. https://doi.org/10.1007/BF00042121Search in Google Scholar

Becker T.L. Jr, Cannon R.M., Ritchie R.O., Finite crack kinking and T-stresses in functionally graded materials, International Journal of Solids and Structures, 38, 5545-5563, 2001. https://doi.org/10.1016/S0020-7683(00)00379-6Search in Google Scholar

Gupta M., Alderliesten R.C., Benedictus R., A review of T-stress and its effects in fracture mechanics, Engineering Fracture Mechanics, 134, 218-241, 2015. https://doi.org/10.1016/j.engfracmech.2014.10.013Search in Google Scholar

Fleming M., Chu Y. A., Moran B. Belytschko T., Enriched element-free galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering, 40, 1483–1504, 1997. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6Search in Google Scholar

Melenk, J., Babuska I., The Partition of Unity Finite Element Method: Basic Theory and Applications. Computer Methods in Applied Mechanics and Engineering, 139, 289-314, 1996. https://doi.org/10.1016/S0045-7825(96)01087-0Search in Google Scholar

ANSYS 19.0, Ansys Inc. Documentation, ANSYS Elements Reference, (2019).Search in Google Scholar

Ma L., Wang Z.Y., Wu L.Z., Numerical Simulation of Mixed-Mode Crack Propagation in Functionally Graded Materials. Materials Science Forum, 631-632, 121-126, 2010. https://doi.org/10.4028/www.scientific.net/MSF.631-632.121Search in Google Scholar

Ooi E.T., Natarajan S., Song C., Tin-Loi F., Crack propagation modelling in functionally graded materials using scaled boundary polygons. International Journal of Fracture, 192, 87-105, 2015. https://doi.org/10.1007/s10704-015-9987-3Search in Google Scholar

Chen X., Luo T., Ooi ET., Ooi E.H., Song C., A quadtree-polygonbased scaled boundary finite element method for crack propagation modeling in functionally graded materials. Theoretical and Applied Fracture Mechanics, 94, 120-133, 2018. https://doi.org/10.1016/j.tafmec.2018.01.008Search in Google Scholar

Larsson, S.G., Carlsson A.J., Influence of non–singular stress terms and specimen geometry on small–scale yielding at crack tips in elastic–plastic materials. Journal of the Mechanics and Physics of Solids, 21, 263–277, 1973. https://doi.org/10.1016/0022-5096(73)90024-0Search in Google Scholar

Boggarapu V., Gujjala R., Ojha S., Acharya S., Babu P.V., Chowdary S., Gara D.K., State of the art in functionally graded materials. Composite Structures, 262, 2021, 113596. https://doi.org/10.1016/j.compstruct.2021.113596Search in Google Scholar

Zheng H., Sladek J., Sladek V., Wang S.K., We P.H., Fracture analysis of functionally graded material by hybrid meshless displacement discontinuity method. Engineering Fracture Mechanics, 247, (2021), 107591. https://doi.org/10.1016/j.engfracmech.2021.107591Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials