Cite

Neumann F.E.: Vorlesungen über die theorie der elasticität der festen körper und des lichtäthers, Leipzig B.G. Teubner, 1885. Search in Google Scholar

Duhamel J.H.: Second mémoire sur les phénomènes thermo-mécaniques. Journal de L’Ecole Polytechnique 15(25) (1837) 1-57. Search in Google Scholar

Biot M.A.: Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics 27(3) (1956) 240–253. Search in Google Scholar

Cattaneo C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. Comptes Rendus de l’Académie des Sciences 247 (1958) 431–433. Search in Google Scholar

Cattaneo C.: Sulla Condizione Del Calore. Atti del Seminario Matematico e Fisico dell’Università di Modena e Reggio Emilia 3 (1948) 83-101. Search in Google Scholar

Vernotte P.: Les paradoxes de la théorie continue de l’équation de la chaleur. Comptes Rendus de l’Académie des Sciences 246 (1958) 3154–3155. Search in Google Scholar

Lord H.W. and Shulman Y.: A generalized dynamic theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15(5) (1967) 299–309. Search in Google Scholar

Green A.E. and Lindsay K.A.: Thermoelasticity. Journal of Elasticity 2(1) (1972) 1–7. Search in Google Scholar

Tzou D.Y.: A unified approach for heat conduction from macro-to micro-scales. Journal of Heat Transfer 117(1) (1995) 8–16. Search in Google Scholar

Tzou D.Y.: The generalized lagging response in small-scale and high-rate heating. International Journal of Heat and Mass Transfer 38(17) (1995) 3231–3240. Search in Google Scholar

Tzou D.Y.: Experimental support for the lagging behavior in heat propagation. Journal of Thermophysics and Heat Transfer 9(4) (1995) 686–693. Search in Google Scholar

Antaki P.: Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. International Journal of Heat and Mass Transfer 41(14) (1998) 2253-2258. Search in Google Scholar

Jiang F.M., Liu D.Y. and Zhou J.H.: Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Nanoscale and Microscale Thermophysical Engineering 6(4) (2003) 331-346. Search in Google Scholar

Zhou J. H., Chen J. K., and Zhang Y.W.: Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Computers in Biology & Medicine 39(3) (2009) 286-293. Search in Google Scholar

Zhang Y. W.: Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. International Journal of Heat and Mass Transfer 52(21-22) 2009 4829-4834,. Search in Google Scholar

Lee H.L., Chen W.L., Chang W.J., Wei E.J. and Yang Y.C.: Analysis of dual-phase-lag heat conduction in short-pulse laser heating of metals with a hybrid method. Applied Thermal Engineering 52(2) 2013 275-283. Search in Google Scholar

Green A.E. and Naghdi P.M.: A Re-Examination of the basic postulates of thermomechanics Proceedings: Mathematical and Physical Sciences 432(1885) (1991) 171–194. Search in Google Scholar

Green A.E. and Naghdi P.M.: On undamped heat waves in an elastic solid. Journal of Thermal Stresses 15(2) (1992) 253–264. Search in Google Scholar

Green A.E. and Naghdi P.M.: Thermoelasticity without energy dissipation. Journal of Elasticity 31(3) (1993) 189–208. Search in Google Scholar

Roychoudhuri S.: On a thermoelastic three-phase-lag model. Journal of Thermal Stresses 30(3) (2007) 231–238. Search in Google Scholar

Sprague G. H. and Huang P. C.: Behavior of Aircraft Structures under Thermal Stress. SAE Transactions 66 (1958) 457–465. Search in Google Scholar

Buettner K.J.K.: Thermal stresses in the modern aircraft. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B 5 (1954) 377–387. Search in Google Scholar

Loveless E. and Boswell A.C.: The Problem of Thermal Stresses in Aircraft Structures: A Paper Presented at the Bristol Conference on Thermal Stress Organized by the Stress Analysis Group of the Institute of Physics on January 7, 1954, Aircraft Engineering and Aerospace Technology 26(4) (1954) 122-124. Search in Google Scholar

Rolfes R. Teßmer J. and Rohwer K.: Models and Tools for Heat Transfer, Thermal Stresses and Stability of Composite Aerospace Structures. Journal of Thermal Stresses 26 (2003) 641-670. Search in Google Scholar

Capey E.C.: Alleviation of thermal stresses in aircraft structures. Aeronautical Research Council Current Papers Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough (1965) Search in Google Scholar

Baczynski Z.F. and Ignaczak: Thermoelastic stress analysis of reactor secondary containment. J. Boley, B.A. [ed.], Netherlands: North-Holland 1977. Search in Google Scholar

Alujevic A., Cernej B., Potrc I. and Skerget L.: Boundary element method for thermoelasticity of nuclear reactors. ETAN ‘81: 25 Conference of the Society for Electronics, Telecommunications, Computers, Automation, and Nuclear Engineering, Yugoslavia: Society for Electronics, Telecommunications, Automation, and Nuclear Engineering (1981). Search in Google Scholar

Yuan B., Zheng J., Wang J., Zeng H., Yang W., Huang H. and Zhang S. Numerical Calculation Scheme of Neutronics-Thermal Mechanical Coupling in Solid State Reactor Core Based on Galerkin Finite Element Method. Energies 16 (2023) 659. Search in Google Scholar

Hoffman R.E. and Ariman, T.: Thermal and mechanical stresses in nuclear reactor vessels. Nuclear Engineering and Design 20(1) (1972) 31-55. Search in Google Scholar

Leccese G., Bianchi D., Betti B., Lentini D. and Nasuti F.: Convective and Radiative Wall Heat Transfer in Liquid Rocket Thrust Chambers. Journal of Propulsion and Power 34(2) (2018) 318–326. Search in Google Scholar

Chryssolouris G.: Laser machining, theory and practice. Springer, New York, 1991. Search in Google Scholar

Dominiczak K., Rzadkowski R. and Radulski W.: Thermoelastic Steam Turbine Rotor Control Based on Neural Network. In: Pennacchi, P. (ed.) Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Mechanisms and Machine Science, 21. Springer, Cham (2015). Search in Google Scholar

Dominiczak K. and Banaszkiewicz M.: A verification approach to thermoelastic steam turbine rotor analysis during transient operation. Transactions IFFM 131 (2016) 55–65. Search in Google Scholar

Banaszkiewicz M. and Badur J.: Practical Methods for Online Calculation of Thermoelastic Stresses in Steam Turbine Components. Selected Problems of Contemporary Thermomechanics. InTech. (2018). Search in Google Scholar

Pertz G. H. and Gerhardt C. J.: Leibnizens gesammelte Werke, Lebinizens mathematische Schriften, Erste Abtheilung, Band II, 301-302. Dritte Folge Mathematik (Erster Band). A. Asher & Comp., Briefwechsel zwischen Leibniz, Hugens van Zulichem und dem Marquis de l’Hospital, 1849. Search in Google Scholar

Lacroix S.F.: Traité du calcul différentiel et du calcul intégral Tome 2. Paris: Courcier, 1814. Search in Google Scholar

Liouville J.: Mémoire sur le calcul des différentielles à indices quelconques. Journal de l’École polytechnique 13 (21. cah.) (1832) 71–162. Search in Google Scholar

Liouville J.: Memoire sur l’integration des equations différentielles à indices fractionnaires. Journal de l’École polytechnique 15(55) (1837) 58-84. Search in Google Scholar

Fourier J.: Théorie analytique de la chaleur, Paris, 1822. Search in Google Scholar

Riemann B.: Versuch einer allgemeinen Auffassung der Integration und Differentiation. Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass. Teubner, Leipzig 1876 (Dover, New York, 1953) 331-344. Search in Google Scholar

Sonin N.Y.: On differentiation with arbitrary index. Moscow, Matematicheskii Sbornik 6(1) (1869) 1-38. Search in Google Scholar

Laurent H.: Sur le calcul des dérivées à indices quelconques. Nouvelles Annales de Mathématiques 3(3) (1884) 240-252. Search in Google Scholar

Grunwald A. K.: Uber “begrenzte” Derivationen und deren Anwendung. Zeitschrift für angewandte Mathematik und Physik 12 (1867) 441-480. Search in Google Scholar

Weyl H.: Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljahresschrift der Naturforsch. Ges. Zürich, 62 (1917) 296. Search in Google Scholar

Lazarevi M.: Advanced topics on applications of fractional calculus on control problems. System Stability and Modeling, WSEAS Press, Belgrade, Serbia, 2012. Search in Google Scholar

Machado J. A. T.: Fractional Calculus: Application in control and robotics. Advances in Mobile Robotics (2008). Search in Google Scholar

Ferreira N., Duarte F., Lima M., Marcos M. and Machado J.A.T.: Application of fractional calculus in the dynamical analysis and control of mechanical manipulators. Fractional Calculus and Applied Analysis 11(1) (2008) 91-113. Search in Google Scholar

Henry B. and Wearne S.: Existence of Turing instabilities in a two-species fractional reaction–diffusion system. SIAM Journal on Applied Mathematics 62 (2002) 870–887. Search in Google Scholar

Metzler, R. and Klafter J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339 (2000) 1-77. Search in Google Scholar

Engheia N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas and Propagation Magazine 39 (1997) 35-46. Search in Google Scholar

Ionescu C., Lopes A., Copot D., Machado J. A. T. and Bates J. H. T.: The role of fractional calculus in modeling biological phenomena: A review. Communications in Nonlinear Science and Numerical Simulation 51 (2017) 141–159. Search in Google Scholar

Schiesse H., Metzlert R., Blument A. and Nonnemacher T.F.: Generalized viscoelastic models: their fractional equations with solutions. Journal of Physics A: Mathematical and General 28 (1995) 6567-6584. Search in Google Scholar

Heymans N. and Bauwens J.-C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta 33 (1994) 210–219. Search in Google Scholar

Povstenko Y.Z.: Fractional heat conduction equation and associated thermal Stresses. Journal of Thermal Stresses 28 (2005) 83–102. Search in Google Scholar

Povstenko Y.Z.: Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses. Mechanics Research Communications 37 (2010) 436–440. Search in Google Scholar

Youssef H. M.: Theory of Fractional Order Generalized Thermoelasticity. Journal of Heat Transfer 132(6) (2010) 061301. Search in Google Scholar

Sherief H.H., El-Sayed A.M.A. and Abd El-Latief A.M.: Fractional order theory of thermoelasticity. International Journal of Solids and Structures 47 (2010) 269–275. Search in Google Scholar

Xu H., Wang X. and Qi H.: Fractional dual-phase-lag heat conduction model for laser pulse heating, 29th Chinese Control And Decision Conference (CCDC), (2017). Search in Google Scholar

Xu H. and Jiang X.: Time fractional dual-phase-lag heat conduction equation. Chinese Physics B 24 (3) (2015) . Search in Google Scholar

Ezzat M. A., El Karamany A. S. and Fayik M. A.: Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Archive of Applied Mechanics 82(4) (2012) 557-572. Search in Google Scholar

Abouelregal A. E.: Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives. Indian Journal of Physics 94 (2020)1949–1963. Search in Google Scholar

Quintanilla R. and Racke R.: A note on stability in three-phase-lag heat conduction. International Journal of Heat and Mass Transfer 51 (2008) 24–29. Search in Google Scholar

Quintanilla R.: A well-posed problem for the three-dual-phase-lag heat conduction, Journal of Thermal Stresses 32(12) (2009) 1270–1278. Search in Google Scholar

Chiriţă S., D’Apice C. and Zampoli V.: The time differential three-phase-lag heat conduction model: thermodynamic compatibility and continuous dependence. International Journal of Heat and Mass Transfer 102 (2016) 226-232. Search in Google Scholar

Xu M. and Tan W.: Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics. Science In China Series G-Physics Astronomy 49 (2006) 257–272. Search in Google Scholar

Klafter J., Sokolov I.M.: Anomalous diffusion spreads its wings. Physics World 18 (2008) 29–32. Search in Google Scholar

Li H.B. and Li Z.: Anomalous energy diffusion and heat conduction in one-dimensional system. Chinese Physics B 19(5) 2010. Search in Google Scholar

Kilbas A.A., Srivastava H. M. and Trujillo J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204 (2006) 69-133. Search in Google Scholar

Machado J.T., Kiryakova V. and Mainardi F.: Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation 16 (2011) 1140–1153. Search in Google Scholar

Podlubny I.: Fractional Differential Equations, Academic Press, New York, 1999. Search in Google Scholar

Hetnarski R.B. and Eslami M.R.: Basic Laws of Thermoelasticity. In: Thermal Stresses –Advanced Theory and Applications. Solid Mechanics and its Applications, 158. Springer, Dordrecht, 2019, pp.1-43. Search in Google Scholar

Giraud A. and Rousset, G. Thermoelastic and thermoplastic response of a porous space submitted to a decaying heat source. International Journal for Numerical and Analytical Methods in Geomechanics 19(7) (1995) 475–495. Search in Google Scholar

Claesson, J. and Probert, T.: Thermoelastic stress due to a rectangular heat source in a semi-infinite medium. Presentation of an analytical solution. Engineering Geology 49(3-4) (1998) 223–229. Search in Google Scholar

Lebedev N. N.: Special functions and their applications. Translated from the Russian by R. A. Silverman. Englewood Cliffs, N.J.: Prentice Hall, Inc. (1965). Search in Google Scholar

Dubner H. and Abate J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. Journal of the ACM, 15(1) (1968) 115–123. Search in Google Scholar

Sokolnikoff I.S.: Mathematical Theory of Elasticity, New York, Dover, 1946. Search in Google Scholar

Thomas L.C: Fundamentals of Heat Transfer, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1980. Search in Google Scholar

Abouelregal A. E.: Fractional heat conduction equation for an infinitely generalized thermoelastic long solid cylinder. International Journal for Computational Methods in Engineering Science and Mechanics 17(5-6) 2016 374–381. Search in Google Scholar

Aouadi M.: A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion. International Journal of Solids and Structures 44(17) (2007) 5711–5722 Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials