Acceso abierto

The Effect of Spray Distance on Porosity, Surface Roughness and Microhardness of WC-10Co-4Cr Coatings Deposited by HVOF


Cite

1. Fauchais P., Heberlain J. V. R., Boulos M. I.: Thermal spray fundamentals, from powder to part, Springer, New York (2014).10.1007/978-0-387-68991-3 Search in Google Scholar

2. Pawłowski L.: The science and engineering of thermal spray coatings, 2nd ed. Wiley, Chichester, England (2008).10.1002/9780470754085 Search in Google Scholar

3. Ahmed R., Ali O., Berndt C.C., Fardan A.: Sliding wear of conventional and suspension sprayed nanocomposite WC-Co coatings: an invited review, Journal of Thermal Spray Technology 30 (2021) 800-861.10.1007/s11666-021-01185-z Search in Google Scholar

4. Berger L.-M.: Application of hardmetals as thermal spray coatings, International Journal of Refractory Metals and Hard Metals 49 (2015) 350-364.10.1016/j.ijrmhm.2014.09.029 Search in Google Scholar

5. Houdkova S., Blahova O., Zahalka F., Kasparova M.: The instrumented indentation study of HVOF sprayed hardmetal coatings, Journal of Thermal Spray Technology 21(1) (2012) 77-85.10.1007/s11666-011-9677-2 Search in Google Scholar

6. Żórawski W.: Properties of plasma and HVOF sprayed Coatings, Tribologia 6 (2010) 319-327. Search in Google Scholar

7. Wang Y., Zhang W., Chen D., Liu X., Hu W.: High temperature friction and wear performance of TiB2-50Ni composite coating sprayed by HVOF technique, Surface and Coatings Technology 407 (2021) 126766.10.1016/j.surfcoat.2020.126766 Search in Google Scholar

8. Singh J.: Wear performance analysis and characterization of HVOF deposited Ni-20Cr2O3, Ni-30Al2O3 and Al2O3-13TiO2 coatings, Applied Surface Science Advances 6 (2021) 100161.10.1016/j.apsadv.2021.100161 Search in Google Scholar

9. Szala M., Walczak M., Łatka L., Gancarczyk K., Özkan D.: Cavitation erosion and sliding wear of MCrAlY and NiCrMo deposited by HVOF thermal spraying, Advances in Materials Science 20 (64) (2020) 26-38.10.2478/adms-2020-0008 Search in Google Scholar

10. Myalska H., Szymański K., Moskal G.: Microstructure and properties of WC-Co HVAF coatings obtained from standard, superfine and modified by sub-micrometric carbide powders, Archives of Metallurgy and Metals 60 (2015) 759-766.10.1515/amm-2015-0203 Search in Google Scholar

11. Matikainen V., Koivuluoto H., Vuoristo P.: A study of Cr3C2-based HVOF and HVAF coatings: abrasion, dry particle erosion and cavitation erosion resistance, Wear 446-447 (2020) 203188.10.1016/j.wear.2020.203188 Search in Google Scholar

12. Puddu P., Popa S., Bolelli G., Krieg P., Lassinantti Gualtieri M., Lusvarghi L., Killinger A., Gadow R.: Suspension HVOF spraying of TiO2 using a liquid-fueled torch, Surface and Coatings Technology 349 (2018) 677-694.10.1016/j.surfcoat.2018.06.062 Search in Google Scholar

13. Michalak M., Łatka L., Sokołowski P., Toma F.-L., Myalska H., Denoirjean A., Ageorges H.: Microstructural, mechanical and tribological properties of finely grained Al2O3 coatings obtained by SPS and S-HVOF methods, Surface and Coatings Technology 404 (2020) 126463.10.1016/j.surfcoat.2020.126463 Search in Google Scholar

14. Vignesh S., Shanmugam K., Balasubramanian V., Sridhar K.: Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings, Defence Technology 13 (2017) 101-110.10.1016/j.dt.2017.03.001 Search in Google Scholar

15. Sidhu T. S., Prakash S., Agrawal R. D.: State of the art of HVOF coating investigations - a review, Marine Technology Society Journal 39(2) (2005) 53-64.10.4031/002533205787443908 Search in Google Scholar

16. Lamana M. S., Pukasiewicz G. M. A., Sampath A.: Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings, Wear 398-399 (2018) 209-219.10.1016/j.wear.2017.12.009 Search in Google Scholar

17. Selvadurai U., Hollingsworth P., Baumann I., Hussong B., Tillmann W., Rausch S., Biermann D.: Influence of the handling parameters on residual stresses of HVOF-sprayed WC-12Co coatings, Surface and Coatings Technology 268 (2015) 30-35.10.1016/j.surfcoat.2014.11.055 Search in Google Scholar

18. Ang A., Berndt C. C.: Thermal spray coating testing methods, Porosity of coatings. A review of testing methods for thermal spray coatings, International Materials Reviews 59(4) (2014) 179-223.10.1179/1743280414Y.0000000029 Search in Google Scholar

19. Deshpande S., Kulkarni A., Sampath S., Herman H.: Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering, Surface & Coatings Technology 187(1) (2004) 6-16.10.1016/j.surfcoat.2004.01.032 Search in Google Scholar

20. Wang Z., Kulkarni A., Deshpande S., Nakamura T., Herman H.: Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings, Acta Materialia, 51(18) (2003) 5319-5334.10.1016/S1359-6454(03)00390-2 Search in Google Scholar

21. Paul S.: Assessing Coating Reliability Through Pore Architecture Evaluation, Journal of Thermal Spray Technology 19 (2010) 779-786.10.1007/s11666-010-9474-3 Search in Google Scholar

22. Ganvir A., Jahagirdar A. R., Mulone A., Örnfeldt L., Björklund S., Klement U., Joshi S.: Novel utilization of liquid feedstock in high velocity air fuel (HVAF) spraying to deposit solid lubricant reinforced wear resistant coatings, Journal of Materials Processing Technology 295 (2021) 117203.10.1016/j.jmatprotec.2021.117203 Search in Google Scholar

23. Klement U., Ekberg J., Kelly S.T.: 3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy, Journal of Thermal Spray Technology 26 (2017) 456-463.10.1007/s11666-017-0532-y Search in Google Scholar

24. Horny D., Schukraft J., Weidenmann K. A., Schulz K.: Numerical and Experimental Characterization of Elastic Properties of a Novel, Highly Homogeneous Interpenetrating Metal Ceramic Composite, Advanced Engineering Material 22 (2020) 1901556.10.1002/adem.201901556 Search in Google Scholar

25. Wei Z.-Y., Wang L.-S., Cai H.-N., Li G.-R., Chen X.-F., Zhang W.-X.: Dominant effect of oriented 2D pores on heat flux in lamellar structured thermal barrier coatings, Ceramics International 45(14) (2019) 16725-18154.10.1016/j.ceramint.2019.05.254 Search in Google Scholar

26. Lawrence M., Jiang Y.: Porosity, Pore Size Distribution, Microstructure, Bio-Aggregates Based Building Materials Springer Dordrecht (2017) 39-71.10.1007/978-94-024-1031-0_2 Search in Google Scholar

27. Michalak M., Łatka L., Szymczyk P. and Sokołowski P.: Computational image analysis of Suspension Plasma Sprayed YSZ coatings. ITM Web of Conferences 15, 06004 (2017).10.1051/itmconf/20171506004 Search in Google Scholar

28. Du H., Shin J. H., Lee S. W.: Study on Porosity of Plasma-Sprayed Coatings by Digital Image Analysis Method, Journal of Thermal Spray Technology 14(4) (2005) 453-461.10.1361/105996305X76450 Search in Google Scholar

29. Ott D. K., Cyrs W., Peters T. M.: Passive measurement of coarse particulate matter, PM10-2.5, Aerosol Science 39 (2008) 156-167.10.1016/j.jaerosci.2007.11.002 Search in Google Scholar

30. Łatka L., Michalak M., Szala M., Walczak M., Sokołowski P., Ambroziak A.: Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings, Surface and Coatings Technology 410 (2021) 126979.10.1016/j.surfcoat.2021.126979 Search in Google Scholar

31. Jonda E., Łatka L.: Comparative analysis of mechanical properties of WC-based cermet coatings sprayed by HVOF onto AZ31 magnesium alloy substrates, Advances in Science and Technology Research Journal 15 (2021), 57-64.10.12913/22998624/135979 Search in Google Scholar

32. Luiz L.A., de Andrade J., Pesqueira C.M. et al.: Corrosion Behavior and Galvanic Corrosion Resistance of WC and Cr3C2 Cermet Coatings in Madeira River Water, Journal of Thermal Spraying Technology 30 (2021) 205-221.10.1007/s11666-021-01152-8 Search in Google Scholar

33. Qiao L., Wu Y., Hong S., Long W., Cheng J.: Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying, Ceramic International 47 (2021) 1829-1836.10.1016/j.ceramint.2020.09.009 Search in Google Scholar

34. Song B., Murray J.W., Wellman R.G., Pala Z., Hussain T.: Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings, Wear (2020) 442-443.10.1016/j.wear.2019.203114 Search in Google Scholar

35. Lima R.S., Karthikeyan J., Kay C.M., Lindemann J., Berndt C.C.: Microstructural characteristics of cold-sprayed nanostructured WC Co coatings, Thin Solid Film 416 (2002) 129–135.10.1016/S0040-6090(02)00631-4 Search in Google Scholar

36. Ding X., Ke D., Yuan, C., Ding Z., Cheng X.: Microstructure and Cavitation Erosion Resistance of HVOF Deposited WC-Co, Coatings with Different Sized WC, Coatings 8 (2018) 307.10.3390/coatings8090307 Search in Google Scholar

37. Aguero A., Camon F., Garcıa de Blas J., del Hoyo J.C., Muelas R., Santaballa A., Ulargui S., Valles P.: HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators, Journal of Thermal Spray Technology 20 (2011) 1292-1309.10.1007/s11666-011-9686-1 Search in Google Scholar

38. Sidhu H. S., Sidhu B. S., Prakash S.: Mechanical and microstructural properties of HVOF sprayed WC-Co and Cr3C2-NiCr coatings on the boiler tube steels using LPG as the fuel gas, Journal Materials Processing Technology 171 (2006) 77–82.10.1016/j.jmatprotec.2005.06.058 Search in Google Scholar

39. Zhan S.-H., Cho T.-Y., Yoon J.-H., Li M.-X., Shum P.W., Kwon S.-C.: Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC-Cr-Ni coatings modified by laser heat treatment, Material Science Engineering B 162 (2009) 127–134.10.1016/j.mseb.2009.03.017 Search in Google Scholar

40. Berger L.-M., Saaro S., Naumann T., Kasparova M., Zahala F.: Microstructure and Properties of HVOF-Sprayed WC-(W,Cr)2C-Ni Coatings, Journal of Thermal Spray Technology 17 (2008) 395-403.10.1007/s11666-008-9189-x Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials