Acceso abierto

Microstructural Evaluation of the High-Frequency Induction Welded Joints of Low Carbon Steel Pipes


Cite

1. Sajek A., Welding Thermal Cycles of Joints Made of S1100QL Steel by Saw and Hybrid PlasmaMag Processes, Adv. Mater. Sci. 20 (2020) 75–86.10.2478/adms-2020-0023 Search in Google Scholar

2. Ziewiec A., Tasak E., Witkowska M., Ziewiec K., Microstructure and Properties of Welds of SemiAustenitic Precipitation Hardening Stainlees Steel after Heat Treatment, Arch. Metall. Mater. 58 (2013) 613–617.10.2478/amm-2013-0046 Search in Google Scholar

3. Janiczak R., Pańcikiewicz K.,, Laser welding of austenitic ferrofluid container for the KRAKsat satellite, Weld. World. 65 (2021) 1347–1357.10.1007/s40194-021-01103-5 Search in Google Scholar

4. Kocurek R., Adamiec J., The Repair Welding Technology of Casts Magnesium Alloy QE22, Solid State Phenom. 212 (2013) 81–86.10.4028/www.scientific.net/SSP.212.81 Search in Google Scholar

5. Górka J., Przybyła M., Szmul M., Chudzio A., Ładak D., Orbital TIG Welding of Titanium Tubes with Perforated Bottom Made of Titanium-Clad Steel, Adv. Mater. Sci. 19 (2019) 55–64.10.2478/adms-2019-0017 Search in Google Scholar

6. Adamiec J., Pfeifer T., Rykała J., CMT and MIG-Pulse Robotized Welding of Thin-Walled Elements Made of 6xxx and 2xxx Series Aluminium Alloys, Solid State Phenom. 191 (2012) 45–56.10.4028/www.scientific.net/SSP.191.45 Search in Google Scholar

7. De Backer M., Van Minnebruggen K., De Waele W., The influence of material anisotropy and spiral welding on tensile strain capacity of spiral welded pipes, Int. J. Sustain. Constr. Des. 6 (2015) 9. Search in Google Scholar

8. Simion P., Dia V., Istrate B., Hrituleac G., Hrituleac I., Munteanu C., Study of fatigue behavior of longitudinal welded pipes, IOP Conf. Ser. Mater. Sci. Eng. 145 (2016).10.1088/1757-899X/145/2/022032 Search in Google Scholar

9. EN ISO 3183: Petroleum and natural gas industries - Steel pipe for pipeline transportation systems, 2020. Search in Google Scholar

10. Liu C., Bhole S.D., Challenges and developments in pipeline weldability and mechanical properties, Sci. Technol. Weld. Join. 18 (2013) 169–181.10.1179/1362171812Y.0000000090 Search in Google Scholar

11. Simion P., Dia V., Istrate B., Munteanu C., Controlling and Monitoring of Welding Parameters for Micro-Alloyed Steel Pipes Produced by High Frequency Electric Welding, Adv. Mater. Res. 1036 (2014) 464–469.10.4028/www.scientific.net/AMR.1036.464 Search in Google Scholar

12. Chen Z., Chen X., Zhou T., Microstructure and Mechanical Properties of J55ERW Steel Pipe Processed by On-Line Spray Water Cooling, Metals (Basel). 7 (2017) 150. Search in Google Scholar

13. Sabzi M., Kianpour-Barjoie A., Ghobeiti-Hasab M., Mersagh Dezfuli S., Effect of High-Frequency Electric Resistance Welding (HF-ERW) Parameters on Metallurgical Transformations and Tensile Properties of API X52 Microalloy Steel Welding Joint, Arch. Metall. Mater. 63 (2018) 1693–1699. Search in Google Scholar

14. Merchant V.E., Laser welding in the pipeline industry, in: D. Belforte (Ed.), Ind. Laser Handb., Springer-Verlag New York Inc., 1992, 91–88.10.1007/978-1-4612-2882-0_8 Search in Google Scholar

15. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding, Arch. Civ. Mech. Eng. 16 (2016) 777–783.10.1016/j.acme.2016.05.001 Search in Google Scholar

16. Pańcikiewicz K., Structure and Properties of Welded Joints of 7CrMoVTiB10-10 (T24) Steel, Adv. Mater. Sci. 18 (2018) 37–47.10.1515/adms-2017-0026 Search in Google Scholar

17. Ziewiec A., Tasak E., Zielińska-Lipiec A., Ziewiec K., Kowalska J., The influence of rapid solidification on the microstructure of the 17Cr–9Ni–3Mo precipitation hardened steel, J. Alloys Compd. 615 (2014) 627–S632. Search in Google Scholar

18. Rakoczy Ł., Grudzień M., Zielińska-Lipiec A., Contribution of Microstructural Constituents on Hot Cracking of Mar-M247 Nickel Based Superalloy, Arch. Metall. Mater. 63 (2018) 181–189. Search in Google Scholar

19. Pańcikiewicz K., Radomski W., Lack of tightness analysis of concealed welded radiators, Eng. Fail. Anal. 114 (2020) 104579. Search in Google Scholar

20. Güngör Ö.E., Yan P., Thibaux P., Liebeherr M., Bhadeshia H.K.D.H., Quidort D., Investigations Into the Microstructure–Toughness Relation in High Frequency Induction Welded Pipes, 8th Int. Pipeline Conf. Vol. 2, ASMEDC (2010) 577–585.10.1115/IPC2010-31372 Search in Google Scholar

21. Yan P., High frequency induction welding & post-welding heat treatment of steel pipes, University of Cambridge, 2011. Search in Google Scholar

22. Yan P., Güngör Ö.E., Thibaux P., Liebeherr M., Bhadeshia H.K.D.H., Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment, Mater. Sci. Eng. A. 528 (2011) 8492–8499.10.1016/j.msea.2011.07.034 Search in Google Scholar

23. Śloderbach Z., Pająk J., Determination of Ranges of Components of Heat Affected Zone Including Changes of Structure, Arch. Metall. Mater. 60 (2015) 2607–2612.10.1515/amm-2015-0421 Search in Google Scholar

24. Udhayakumar T., Mani E., Effect of HF Welding Process Parameters and Post Heat Treatment in the Development of Micro Alloyed HSLA Steel Tubes for Torsional Applications, J. Mater. Sci. Eng. 06 (2017).10.4172/2169-0022.1000334 Search in Google Scholar

25. Zhang W., Zhao G., Fu Q., Study on the effects and mechanisms of induction heat treatment cycles on toughness of high frequency welded pipe welds, Mater. Sci. Eng. A. 736 (2018) 276–287.10.1016/j.msea.2018.09.004 Search in Google Scholar

26. de Santana I.J., Paulo B., Modenesi P.J., High frequency induction welding simulating on ferritic stainless steels, J. Mater. Process. Technol. 179 (2006) 225–230.10.1016/j.jmatprotec.2006.03.063 Search in Google Scholar

27. Matusiewicz P., Czarski A., Adrian H., Estimation of materials microstructure parameters using computer program SigmaScan Pro, Metall. Foundry Eng. 33 (2007).10.7494/mafe.2007.33.1.33 Search in Google Scholar

28. Wojnar L., Kurzydłowski K., Szala J., Metallography and Microstructures, in: G.F. Vander Voort (Ed.), ASM Handbook, Vol. 9. Metallogr. Microstruct., ASM Int, 2004. Search in Google Scholar

29. Szala J., Teoretyczne i praktyczne aspekty ilościowego opisu struktury stali ferrytycznoperlitycznych, Hut. - Wiadomości Hut. 1 (2018) 22–28.10.15199/24.2018.9.5 Search in Google Scholar

30. Krawczyk J., Adrian H., The kinetics of austenite grain growth in steel for wind power plant shafts, Arch. Metall. Mater. 55 (2010) 91–99. Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials