Acceso abierto

Prediction of Mechanical Properties as a Function of Welding Variables in Robotic Gas Metal Arc Welding of Duplex Stainless Steels SAF 2205 Welds Through Artificial Neural Networks


Cite

1. Ma M., Shrikrishna K.A., Sathiya P.: The impact of heat input on the strength, toughness, microhardness, microstructure and corrosion aspect of friction welded duplex stainless steel joints. Journal of Manufacturing Process 18 (2015) 92-106. Search in Google Scholar

2. Zou Y., Ueji R., Fujii H.: Mechanical Properties of advanced active-TIG welded duplex stainless steel and ferrite steel. Materials Science and Engineering A 620 (2015) 140-148 Search in Google Scholar

3. Palanivel R., Mathews P.K., Murugan N.: Development of mathematical model to predict the mechanical properties of friction stir welded AA6351 aluminum alloy. Journal of Engineering Science and Technology Review 4 (1) (2011) 25-31. Search in Google Scholar

4. Verma R. P., Pandey K.N.: Multi-response optimization of process parameters of GMA welding of dissimilar AA 6061-T6 and AA 5083-O aluminium alloy for optimal mechanical properties. Materials Today: Proceedings (2021) in Press.10.1016/j.matpr.2020.11.375 Search in Google Scholar

5. Heidarzadeh A., Saeid T.: Prediction of mechanical properties in friction stir welds of pure copper. Materials and Design 52 (2013) 1077–1087. Search in Google Scholar

6. Luo Y., Liu J., Xu H., Xiong C., Liu L.: Regression modeling and process analysis of resistance spot welding on galvanized steel sheet. Materials and Design 30 (2009) 2547–2555. Search in Google Scholar

7. Marichamy M., Babu S.: Experimental study and Taguchi optimization of process parameter on mechanical properties of A319 aluminum alloy using friction stir welding. Materials Today: Proceedings 39 (2021) 1527–1531 Search in Google Scholar

8. Rao S.P., Gupta O.P., Murty S.S.N., Rao A.K.: Effect of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. International Journal Advanced Manufacturing Technology 45 (2009) 45 496–505. Search in Google Scholar

9. Kumar S., Singh, R.: Optimization of process parameters of Metal Inert Gas welding with preheating on AISI 1018 mild steel using grey based Taguchi method. Measurement 148 (2019) 106924. Search in Google Scholar

10. Vakili-Tahami F., Majnoun P., Ziaei-Asl A.: Controlling the in-service welding parameters for T-shape steel pipes using neural network. International Journal of Pressure Vessels and Piping 175 (2019) 103937. Search in Google Scholar

11. Pal S., Pal S.K, Samantaray A.K.: Artificial neural network modeling of weld joint strength prediction of a pulsed Metal Inert Gas welding process using arc signals. Journal of Materials Processing Technology 202 (2008) 464-474. Search in Google Scholar

12. Atharifar H.: Optimum parameters design for friction stir spot welding using a genetically optimized neural network system. Proceedings of the Institution of Mechanical Engineer Part B: Journal of Engineering Manufacture 224 (2009) 403-418. Search in Google Scholar

13. Saoudi A., Fellah M., Hezil N., Lerari D., Khamouli F., Atoui L., Bachari K., Morozova J., Obrosov A., Samad M.A.: Prediction of mechanical properties of welded steel X70 pipeline using neural network modelling. International Journal of Pressure Vessels and Piping 186 (2020) 104153. Search in Google Scholar

14. Sivagurumanikandan N., Saravanan S., Kumar G.S., Raju S., Raghukandan K.: Prediction and optimization of process parameters to enhance the tensile strength of Nd: YAG laser welded super duplex stainless steel. Optik 157 (2018) 833-840. Search in Google Scholar

15. Chaki S.: Neural networks based prediction modelling of hybrid laser beam welding process parameters with sensitivity analysis. SN Applied Sciences 1(10) (2019) 1-11. Search in Google Scholar

16. Cortéz V.H.L, Valdés F.A.R, Treviño L.T.: Weldability of martensitic steel by resistance spot welding a neural network optimization in the automotive industry. Materials and Manufacturing Processes 24 (12) 1412-1417.10.1080/10426910903343916 Search in Google Scholar

17. Thekkuden D.T., Mourad A-H.I.: Investigation of feed-forward back propagation ANN using voltage signals for the early prediction of the welding defect. SN Applied Sciences 1 (2019) 1615. Search in Google Scholar

18. Kim I.S., Son J.S., Park C.E., Lee C.W., Yarlagadda K.D.V Prasad.: A study on prediction of bead height in robotic arc welding using neural network. Journal of Materials Processing Technology 130-131 (2002) 229-234. Search in Google Scholar

19. Payares-Asprino C., Steele J.P.H.: Optimization of GMAW welding parameters in duplex stainless steel welds mechanical properties. Procedures of the ASME 2009 Pressure Vessels and Piping Division Conference; Prague, Czech Republic; PVP2009:77203.10.1115/PVP2009-77203 Search in Google Scholar

20. ASTM A789/A789M-18 Standard Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service; 2018. Search in Google Scholar

21. ASTM A815/A815M-18 Standard Stainless Steel Specification for Wrought Ferritic, Ferritic/ Austenitic, and Martensitic Stainless Steel Piping Fittings; 2018. Search in Google Scholar

22. AVESTA WELDING. How to Weld AVESTA SHEFFIELD. Sweden, Trade Literature, 2005. Search in Google Scholar

23. Payares-Asprino C, Patricia Muñoz-Escalona P.: Modeling to predict the percentage of ferrite as a function of heat input in Gas Metal Arc Welding of duplex stainless steel SAF2205 weldment. Proceedings of ESSC & DUPLEX 2019 Conference 285-294. Search in Google Scholar

24. ASTM A370.: Standard Test Methods and Definitions for Mechanical Testing of Steel Products, Edition 2019. Search in Google Scholar

25. ASTM E8/E8M.: Standard Methods for Tension Testing of Metallic Materials, Edition 2018. Search in Google Scholar

26. Muthupandi V., Srinivassa P.B., Asehadri S.K, Sundaresam S.: Effect of weld metal chemistry and heat input of the structure and properties of duplex stainless steel welds, Materials Science and Engineering A 358 (1-2) (2003) 9-16. Search in Google Scholar

27. Vahman M., Shamanian M., Golozar M.A., Jalali A., Ahl Sarmadi M., Kangazian J.: The effect of welding heat input on the structure–property relationship of a new grade super duplex stainless steel. Steel Research International 91(1) (2020) 1900347. Search in Google Scholar

28. Lee C-H., Chang K-Ho: Comparative study on girth weld-induced residual stresses between austenitic and duplex stainless steel pipe welds. Applied Thermal Engineering 63 (2014) 140-150. Search in Google Scholar

29. Wu T., Wang J., Li H., Jiang Z., Liu C., Zhang H.: Reformation behavior of austenite in duplex stainless steel with rapid heat treatment. Steel Research International (90)2 (2018) 1800305. Search in Google Scholar

30. Varbai B., Pickle T., Májlinger K.: Effect of heat input and role of nitrogen on the phase evolution of 2205 duplex stainless steel weldment. International Journal of Pressure Vessels and Piping 176 (2019) 103952. Search in Google Scholar

31. Baghdadchi A., Hosseini A. V., Hurtig K., Karlsson L.: Promoting austenite formation in laser welding of duplex stainless steel-impact of shielding gas and laser reheation. Welding in the World 65 (2021) 499-511. Search in Google Scholar

32. El-Batahgy A.M., Khourshid A.F., Sharef T.: Effect of laser beam welding parameters on microstructure and properties of duplex stainless steel. Material Science and Applications 2(10) (2011) 1443. Search in Google Scholar

33. Haykin S.S.: Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, New York, (1994) 138-229. Search in Google Scholar

34. Beale M.H., Haga H.B., Demuth H.B.: Neural Network ToolboxTM user’s guide. R22012a, the MathWorks, Inc., Apple Hill Drive Natick, 2012 MA 01760-2098. Search in Google Scholar

35. Freeman J.A., Skapura D.M.: Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company, USA, 1991. Search in Google Scholar

36. Kanzow C., Yamashita N., Fukushima M.: Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. Journal of Computational Applied Mathematics 172 (2) (2004) 375-397. Search in Google Scholar

37. Nagesh D.S., Datta G.L.: Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. Journal of Materials Processing Technology 123 (2002) 303–312. Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials