Cite

1. Cizek J., Matejicek J.: Medicine Meets Thermal Spray Technology: A Review of Patents. J Therm Spray Tech 27(8) (2018) 1251–1279. Search in Google Scholar

2. Matassi F., Botti A., Sirleo L., Carulli C., Innocenti M.: Porous metal for orthopedics implants Clin. Cases Miner. Bone Metab. 10(2) (2013) 111-115 PMID: 24133527. Search in Google Scholar

3. Civantos A., Dominguez C., Pino R.J., Setti G., Pavon J.J., Martinez-Campos E., Garcia F.J.G., Rodriguez J.A., Allain J.P., Torres Y.: Designing bioactive porous titanium interfaces to balance mechanical properties and in vitro cells behavior towards increased osseointegration. Surf Coat Technol 368 (2019) 162–174. Search in Google Scholar

4. Liu W., Liu S., Wang L.: Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. Coatings 9 (2019) 249. Search in Google Scholar

5. Sola A., Belluci D., Cannillo V.: Functionally graded materials for orthopedic applications—an update on design and manufacturing. Biotechnol Adv 34 (2016) 504–531. Search in Google Scholar

6. Ke D., Vu A.A., Bandyopadhyay A., Bose S.: Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater 84 (2019) 414–423. Search in Google Scholar

7. Łatka L, Pawłowski L, Winnicki M, Sokołowski P, Małachowska A, Kozerski S.: Review of Functionally Graded Thermal Sprayed Coatings. Applied Sciences 10(15) (2020) 5153. Search in Google Scholar

8. Tumilovich M.V., Savich V.V., Shelukhina A.I.: [The effect of particle shape and size on the osseointegration of porous titanium powder implants]. Doklady BGUIR 7(101) (2016) 115 – 119. In Russian. Search in Google Scholar

9. Kalita V.I., Mamaev A.I., Mamaeva V.A., Melanin D.A., Komlev D.I., Gnedovets A.G., Novochadov V.V., Komlev V.S., Radyuk A.A.: Structure and shear strength of implants with plasma coatings. Inorg Mater Appl Res 7(3) (2016) 376–387. Search in Google Scholar

10. Heimann R.B.: Materials Science of Bioceramic Coatings. The Open Biomedical Engineering Journal 9 (2015) 25–28.10.2174/1874120701509010025439121425893013 Search in Google Scholar

11. Jemat A., Ghazali M.J., Razali M., Otsuka Y.: Surface modifications and their effects on titanium dental implants. BioMedical Research International 2015 (2015) 791-725. Search in Google Scholar

12. Nicholson J.W.: Titanium Alloys for Dental Implants: A Review. Prosthesis 2 (2020) 100–116. Search in Google Scholar

13. Jung J.H., Kim S.Y., Yi Y.J., Lee B.K., Kim Y.K.: Hydroxyapatite-Coated implant: Clinical prognosis assessment via a retrospective Follow-Up study for the average of 3 years. J Adv Prosthodont 10 (2018) 85–92. Search in Google Scholar

14. Hallab N.J., Jacobs J.J.: Orthopedic Applications. [In] Biomaterials Science, B.D. Ratner, A.S. Hoffman, F.J. Schoen [ed.], Academic Press, San Diego, 2013, pp. 841-882.10.1016/B978-0-08-087780-8.00073-5 Search in Google Scholar

15. Kunčická L., Kocich R., Lowe T.C.: Advances in metals and alloys for joint replacement. Prog Mater Sci 88 (2017) 232–280. Search in Google Scholar

16. Fotovvati B., Namdari N., Dehghanghadikolaei A.: On Coating Techniques for Surface Protection: A Review. J Manuf Mater Process 3(1) (2019) 1-22. Search in Google Scholar

17. Łatka L., Szala M., Michalak M., Pałka T.: Impact of Atmospheric Plasma Spray Parameters Cavitation Erosion Resistance of Al2O3–13% TiO2 Coatings Acta Phys. Pol., A 136 (2) (2019) 342-347. Search in Google Scholar

18. Alontseva D., Ghassemieh E., Voinarovych S., Kyslytsia O., Polovetski, N. Prokhorenkova, Kadyroldina A.T.: Manufacturing and characterization of robot assisted microplasma multilayer coating of Titanium implants. Johnson Matthey Technol. Rev. 64(2) (2020) 180–191. Search in Google Scholar

19. Alontseva D., Ghassemieh E., Voinarovych S., Russakova A., Kyslytsia O., Polovetskyi Y., Toxanbayeva A.: Characterisation of the microplasma spraying of biocompatible coating of titanium. Journal of Microscopy 279(3) (2020) 148–157. Search in Google Scholar

20. Alontseva D. L., Azamatov B., Voinarovych S., Kyslytsia O., Koltunowicz T.N., Toxanbayeva A.: Development of Technologies for Manufacturing Medical Implants Using CNC Machines and Microplasma Spraying of Biocompatible Coatings. Przegląd Elektrotechniczny 96(4) (2020)154-157. Search in Google Scholar

21. Alontseva D., Krasavin A., Abilev M., Zhilkashinova A.: Microplasma Deposition of Biocompatible Coatings Using an Intelligent Robotic System for Plasma Processing. Acta Phys. Pol., A 136 (2) (2019) 310-313. Search in Google Scholar

22. Alontseva D.L., Abilev M.B., Zhilkashinova A.M., Voinarovych S.G., Kyslytsia O. N., Ghassemieh E., Russakova A., Łatka L.: Оptimization of hydroxyapatite synthesis and microplasma spraying of porous coatings onto titanium implants. Adv. in Mater. Science 18(3) (57) (2018) 79-94. Search in Google Scholar

23. Implants for Surgery- Plasma-sprayed unalloyed titanium coatings on metallic surgical implants - part 1: General requirements. International Organisation for Standards. BS ISO 13179-1:2014, 2014. Search in Google Scholar

24. Implants for surgery - Hydroxyapatite. Thermally sprayed coatings of hydroxyapatite. British Standards Institution. BS ISO 13779-2:2018, 2018. Search in Google Scholar

25. John A.A., Jaganathan S.K., Supriyanto E., Manikandan A.: Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics. Curr. Sci. 111 (2016) 1003–1015. Search in Google Scholar

26. Yushenko K., Borisov Yu., Voynarovych S., Fomakin О.: Plasmatron for spraying of coatings/Pub. No.: WO/2004/010747 International Application. No.: PCT/UA2003/000014 Publication Date: 29.01.2004; International Filing Date: 25.04.2003, IPC: H05H 1/32. – 2006. Search in Google Scholar

27. ASTM F136-13(2013) Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), ASTM International, West Conshohocken, PA, 2013. Search in Google Scholar

28. ASM Handbook, Volume 5A: Thermal Spray Technology, R. C. Tucker, Ed., (2013). Search in Google Scholar

29. Montgomery D.C., Runger G.C., Hubele N.R.: Engineering Statistics, Wiley, Hoboken (NJ), 2001. Search in Google Scholar

30. Yushenko K.A., Borisov Yu.S., Kuznetsov V.D., Korzh V.M.: Inzheneriya poverkhni–Pidruchnyk, Naukova Dumka, Kyiv, 2007. In Ukrainian. Search in Google Scholar

31. Mutter M., Mauer G., Mücke R., Guillon O., Vaben R.: Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings. Surf Coat Technol 318 (2017) 157-169. Search in Google Scholar

32. ASTM E2109-01(2014) Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International, West Conshohocken, PA, 2014. Search in Google Scholar

33. Szala M., Łatka L., Awtoniuk M, Winnicki M., Michalak M.: Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings. Processes 8 (2020) 1544. Search in Google Scholar

34. Szala M., Łatka L., Walczak M., Winnicki M.: Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/Al2O3- and Cu/Al2O3- Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass. Metals 10 (2020) 856. Search in Google Scholar

35. Kalita V.I., Malanin D.A., Mamaev A.I., Mamaeva V.A., Novochadov V.V., Komlev D.I, Komlev V.S., Radyuk A.A.: 3D bioactive coatings with a new type of porous ridge/cavity structure. Materialia 15 (2021).10.1016/j.mtla.2021.101018 Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials