Acceso abierto

Welding Thermal Cycles of Joints Made of S1100QL Steel by Saw and Hybrid Plasma-Mag Processes

   | 31 dic 2020


1. C. Lesch, N. Kwiaton, and F. B. Klose, “Advanced High Strength Steels (AHSS) for Automotive Applications – Tailored Properties by Smart Microstructural Adjustments” Steel Res. Int., vol. 88, no. 10, pp. 1–21, 2017.10.1002/srin.201700210Search in Google Scholar

2. S. Maggi and M. Murgia, “Introduction to the metallurgic characteristics of advanced high-strength steels for automobile applications” Weld. Int., vol. 22, no. 9, pp. 610–618, 2008.10.1080/09507110802413001Search in Google Scholar

3. H. Spindler, M. Klein, R. Rauch, A. Pichler, and P. Stiaszny, “High Strength and Ultra High Strength Hot Rolled Steel Grades – Products for Advanced Applications,” BHM B. und Hüttenmännische Monatshefte, vol. 157, no. 3, pp. 108–112, 2012.10.1007/s00501-012-0062-3Search in Google Scholar

4. J. Klett, I. B. F. Mattos, H. J. Maier, R. H. G. e Silva, and T. Hassel, “Control of the diffusible hydrogen content in different steel phases through the targeted use of different welding consumables in underwater wet welding” Mater. Corros., no. 9, pp. 1–13, 2020.Search in Google Scholar

5. M. S. Węglowski, M. Zeman, and A. Grocholewski, “Effect of welding thermal cycles on microstructure and mechanical properties of simulated heat affected zone for a Weldox 1300 ultra-high strength alloy steel” Arch. Metall. Mater., vol. 61, no. 1, pp. 127–132, 2016.10.1515/amm-2016-0024Search in Google Scholar

6. W. Guo, D. Crowther, J. A. Francis, A. Thompson, Z. Liu, and L. Li, “Microstructure and mechanical properties of laser welded S960 high strength steel” Mater. Des., vol. 85, pp. 534–548, 2015.10.1016/j.matdes.2015.07.037Search in Google Scholar

7. A. Świerczyńska and M. Landowski, “Plasticity of bead-on-plate welds made with the use of stored flux-cored wires for offshore applications” Materials, vol. 13, no. 17, 3888, 2020.Search in Google Scholar

8. D. Fydrych, J. Łabanowski, J. Tomków, and G. Rogalski, “Cold Cracking Of Underwater Wet Welded S355G10+N High Strength Steel” Adv. Mater. Sci., vol. 15, no. 3, pp. 48–56, 2015.10.1515/adms-2015-0015Search in Google Scholar

9. F. Hochhauser, W. Ernst, R. Rauch, R. Vallant, and N. Enzinger, “Influence of the soft zone on the strength of welded modern HSLA steels” Weld. World, vol. 56, no. 5–6, pp. 77–85, 2012.10.1007/BF03321352Search in Google Scholar

10. A. M. Moreno-Uribe, A. Q. Bracarense, and E. C. P. Pessoa, “The effect of polarity and hydrostatic pressure on operational characteristics of rutile electrode in underwater welding” Materials, vol. 13, no. 21, 5001, 2020.Search in Google Scholar

11. M. Szala, G. Winiarski, Ł. Wójcik, and T. Bulzak, “Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness, and Strain-Hardening Coefficients of 42CrMo4 Steel” Materials, vol. 13, no. 9, 2022, 2020.Search in Google Scholar

12. L. Tuz, “Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel” Adv. Mater. Sci., vol. 18, no. 3, pp. 34–42, 2018.10.1515/adms-2017-0039Search in Google Scholar

13. K. Pańcikiewicz, A. Zielińska-Lipiec, and E. Tasak, “Cracking of high-strength steel welded joints” Adv. Mater. Sci., vol. 13, no. 3, pp. 76–85, 2013.10.2478/adms-2013-0013Search in Google Scholar

14. J. Roy J., R. Chakraborti, R. N. Rai, S. C. Saha, “Studies on microstructure and mechanical properties of modified 9Cr–1Mo (P91) steel in submerged arc welding with TiO2-enriched fluxes” J. Braz. Soc. Mech. Sci. & Eng., vol. 41, no. 10, 468, 2019.Search in Google Scholar

15. M. Fiedler, R. Rauch, R. Schnitzer, W. Ernst, G. Simader, and J. Wagner, “The alform® welding system The world’s first system for high-strength welded structures” IIW International Conference High-Strength Materials - Challenges and Applications, Helsinki, Finland, pp. 1–5, 2015.Search in Google Scholar

16. B. Skowronska, T. Chmielewski, D. Golanski, and J. Szulc, “Weldability of S700MC steel welded with the hybrid plasma + MAG method” Manuf. Rev., vol. 7, no. 4, pp. 1–15, 2020.10.1051/mfreview/2020001Search in Google Scholar

17. T. Yang, L. Chen, Y. Zhuang, J. F. Liu, and W. L. Chen, “Arcs interaction mechanism in Plasma-MIG hybrid welding of 2219 aluminium alloy” J. Manuf. Process., vol. 56, no. 4, pp. 635–642, 2020.10.1016/j.jmapro.2020.05.014Search in Google Scholar

18. Z. Xin, Z. Yang, H. Zhao, and Y. Chen, “Comparative study on welding characteristics of laser-CMT and plasma-CMT hybrid welded AA6082-T6 aluminum alloy butt joints” Materials, vol. 12, no. 20, 3300, 2019.Search in Google Scholar

19. A. Beniyash, G. Klimov, and T. Hassel, “The use of non-vacuum electron beam (NVEB) technology as an universal manufacturing process for welding and cutting of high-strength steels” J. Phys. Conf. Ser., vol. 1089, no. 1, pp. 1–9, 2018.Search in Google Scholar

20. M. Amraei et al., “Mechanical properties and microstructural evaluation of the heat-affected zone in ultra-high strength steels” Thin-Walled Struct., vol. 157, no. 9, pp. 1–11, 2020.10.1016/j.tws.2020.107072Search in Google Scholar

21. K. Kudła and K. Wojsyk, “Czy sposób doprowadzania ciepła ma istotny wpływ na geometrię spoin?” Biul. Inst. Spaw., vol. 56, no. 5, pp. 140–144, 2012.Search in Google Scholar

22. K. Kudła and K. Wojsyk, “Ocena ilości ciepła wprowadzonego w procesach spawania łukowego elektrodą topliwą w osłonie gazów ochronnych” Biul. Inst. Spaw., vol. 54, no. 5, pp. 121–126, 2010.Search in Google Scholar

23. K. Yurtisik, S. Tirkes, I. Dykhno, C. H. Gur, and R. Gurbuz, “Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding” Soldag. Inspeção, vol. 18, no. 3, pp. 207–216, 2013.10.1590/S0104-92242013000300003Search in Google Scholar

24. T. Kik and J. Górka, “Numerical Simulations of Laser and Hybrid S700MC T-Joint Welding” Materials, vol. 12, no. 3, 516, 2019.Search in Google Scholar

25. J. Nowacki and A. Sajek, “Verification of Properties of Joints Made of Advances High Strength Steels in the Conditions of the Complex Thermal Cycles of the HPAW Process” Biul. Inst. Spaw., vol. 62, no. 5, pp. 167–173, 2018.10.17729/ebis.2018.5/19Search in Google Scholar

26. K. Banerjee, “Improving weldability of an advanced high strength steel by design of base metal microstructure” J. Mater. Process. Technol., vol. 229, pp. 596–608, 2016.10.1016/j.jmatprotec.2015.09.026Search in Google Scholar

27. A. Sajek and J. Nowacki, “Comparative evaluation of various experimental and numerical simulation methods for determination of t 8/5 cooling times in HPAW process weldments” Arch. Civ. Mech. Eng., vol. 18, no. 2, pp. 583–591, 2018.10.1016/j.acme.2017.10.001Search in Google Scholar

28. Y. Yi, K. Wang, S. Zheng, J. Yi, and L. Xu, “Narrow gap gas metal arc welding of S890QL steel” IIW International Conference High-Strength Materials - Challenges and Applications, Helsinki, Finland, pp. 5–8, 2015.Search in Google Scholar

29. J. Winczek, M. Gucwa, and K. Makles, “Analysis of thermal cycles and phase transformations during multi-pass arc weld surfacing of steel casts taking into account heat of the weld” J. Appl. Math. Comput. Mech., vol. 17, no. 1, pp. 89–100, 2018.10.17512/jamcm.2018.1.09Search in Google Scholar

30. L. Sharma and R. Chhibber, “Investigations of Surface Properties of SAW Fluxes Using CaOSiO2-TiO2 & Al2O3-CaO-SiO2 Ternary Phase Systems” Silicon 2020 (in Press).10.1007/s12633-020-00787-6Search in Google Scholar

Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials