Acceso abierto

Effect of Rare-Earth Co-Doping on the Microstructural and Magnetic Properties of BaFe12O19


Cite

1. Mahmood S.H., Abu-Aljarayesh I.: Hexaferrite Permanent Magnetic Materials. Materials Research Foundations, vol.4, 2016.10.21741/9781945291074Search in Google Scholar

2. Singh C.: Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloy. Materials Research Foundations LLC, vol.57, 2019.Search in Google Scholar

3. Krishnan K.M.: Fundamentals and Applications of Magnetic Materials. Oxford University Press, 1st Ed., 2016.Search in Google Scholar

4. Bruck E.: Handbook of Magnetic Materials. North Holland 1st Ed., vol.26, 2017.Search in Google Scholar

5. Castro W.S., Correa R.R., Paulim Filho P.I., Rivas Mercury J.M., Cabral A.A.: Dielectric and magnetic characterization of barium hexaferrite ceramics. Ceramics International, (2015), 41, 241-246.Search in Google Scholar

6. Zhukov A.: Novel Functional Magnetic Materials Fundamentals and Applications. Springer International Publishing, vol.231, Switzerland, 2016.10.1007/978-3-319-26106-5Search in Google Scholar

7. Vinnik D.A., Zherebtsov D.A., Mashkovtseva L.S., Nemrava S., Yakushechkina A.K., Semisalova A.S., Gudkova S.A., Anikeev A.N., Perov N.S., Isaenko L.I., Niewa R.: Tungsten substituted BaFe12O19 single crystal growth and characterization. Materials Chemistry and Physics, (2015), 155, 99-103.Search in Google Scholar

8. Zhang S., Zhao D.: Advances in Magnetic Materials: Processing, Properties, and Performance. Advances in Materials Science and Engineering CRC Press, 2017.10.1201/9781315371573Search in Google Scholar

9. Yasmin N., Mirza M., Muhammad S., Zahid M., Muhammad A.: Influence of samarium substitution on the structural and magnetic properties of M-type hexagonal ferrites. Journal of Magnetism and Magnetic Materials, (2018), 44615, 276-281.Search in Google Scholar

10. Perez-Juache T.J., Guerrero A.L., Cabal-Velarde J.G., Mirabal-Garcia M., Matutes-Aquino J.A.: Analysis of the structure and Mössbauer study of the neodymium substitution in the Srhexaferrite. Physica B: Condensed Matter, (2016), 50315, 183-188.Search in Google Scholar

11. Hu J., Liu C., Kan X., Liu X., Ur Rehman K.M.: Structure and magnetic performance of Gd substituted Sr-based hexaferrites. Journal of Alloys and Compounds, (2020), 82015, 153-180.Search in Google Scholar

12. Almessiere M.A., Slimani Y., Gungunes H., Sertkol M., Ercan I.: Nd3+ substituted strontium hexaferrites: Structural, magnetic and optical investigation and cation distribution. Journal of Rare Earths, (2020), 38(4), 402-410.Search in Google Scholar

13. Thakur A., Barman P.B., Singh R.R.: Effects of La3+-Nd3+ ions and pre-calcination on the growth of hexaferrite nanoparticles prepared by gel to crystallization technique: Non-isothermal crystallization kinetics analysis. Materials Chemistry and Physics, (2015), 15615, 29-37.Search in Google Scholar

14. Almessiere M.A., Slimani Y., El Sayed H.S., Baykal A.: Morphology and magnetic traits of strontium nanohexaferrites: Effects of manganese/yttrium co-substitution. Journal of Rare Earths, (2019), 37(7), 732-740.Search in Google Scholar

15. Almessiere M.A., Slimani Y., Gungunes H., Baykal A.: Co-substitution of zirconium and neodymium on hyperfine interactions and AC susceptibility of SrFe12O19 nanohexaferrites. Journal of Rare Earths, (2020), 38(3), 265-273.Search in Google Scholar

16. Luo J., Xu Y., Mao H.: Magnetic and microwave absorption properties of rare earth ions (Sm3+,Er3+) doped strontium ferrite and its nanocomposites with polypyrrole. Journal of Magnetism and Magnetic Materials, (2015), 3811, 365-371.Search in Google Scholar

17. Venkatesh G., Subramanian R., Satish Kumar T., Abuthakir J., Sethupathi K.: Investigation on structural and magnetic properties of Al3+ and Ce3+ doped hexaferrites. Materials Today: Proceedings, 2019.Search in Google Scholar

18. Güner S., Almessiere M.A., Slimani Y., Baykal A., Ercan I.: Microstructure, magnetic and optical properties of Nb3+ and Y3+ ions co-substituted Sr hexaferrites. Ceramics International, (2020), 46(4), 4610-4618.Search in Google Scholar

19. Yasmin N., Iqbal M.Z., Zahid M., Gillani S.F., Mirza M.: Structural and magnetic studies of Ce-Zn doped M-type SrFe12O19 hexagonal ferrite synthesized by sol-gel auto-combustion method. Ceramics International, (2019), 45(1), 462-467.Search in Google Scholar

20. Neupane D., Wang L., Adhikari H., Alam J., Mishra S.R.: Synthesis and characterization of co-doped SrFe12−x(DyAl)xO19 hexaferrites. Journal of Alloys and Compounds, (2017), 70115, 138-146.Search in Google Scholar

21. Yasmin N., Abdulsatar S., Hashim M., Zahid M., Mirza M.: Structural and magnetic studies of Ce-Mn doped M-type SrFe12O19 hexagonal ferrites by sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, (2019), 4731, 464-469.Search in Google Scholar

22. Huang T., Peng L., LI L., Wang R., Tu X.: Low temperature sintering behavior of La-Co substituted M-type strontium hexaferrites for use in microwave LTCC technology. Journal of Rare Earths, (2016), 34(2), 148-151.Search in Google Scholar

23. Serletis C., Litsardakis G., Pavlidou E., Efthimiadis K.G.: Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method. Physica B: Condensed Matter, (2017), 52515, 78-83.Search in Google Scholar

24. Satyapal H.K., Singh R.K., Kumar N., Sharma S.: Low temperature synthesis and influence of rare earth Nd3+ substitution on the structural, magnetic behaviour of M-type barium hexaferrite nanomaterials. Materials Today: Proceedings, 2020.Search in Google Scholar

25. Verma S., Pandey O.P., Paesano A., Sharma P.: Comparison of structural and magnetic properties of La3+ substituted BaFe12O19 prepared by different substitution methods. Physica B: Condensed Matter, (2014), 4481, 57-59.Search in Google Scholar

26. Almessiere M.A., Slimani Y., Guner S., Aldakhil S., Baykal A.: Ultrasonic synthesis, magnetic and optical characterization of Tm3+ and Tb3+ ions co-doped barium nanohexaferrites. Journal of Solid State Chemistry, (2020), 286, 121310.Search in Google Scholar

27. Almessiere M.A., Slimani Y.A., Korkmaz D., Baykal A., Ercan I.: A study on the spectral, microstructural, and magnetic properties of Eu-Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach. Ultrasonics Sonochemistry, (2020), 62, 104847.Search in Google Scholar

28. Shekhawat D., Singh A.K., Roy P.K.: Structural and electro-magnetic properties of high (BH)max La-Sm substituted Sr-hexaferrite for brushless DC electric motors application. Journal of Molecular Structure, (2019), 11795, 787-794.Search in Google Scholar

29. Mohseni F., Pullar R.C., Vieira J.M., Amaral J.S.: Enhancement of maximum energy product in exchange-coupled BaFe12O19/Fe3O4 core-shell-like nanocomposites. Journal of Alloys and Compounds, (2019), 80625, 120-126.Search in Google Scholar

30. Mahmood S., Aloqaily A., Maswadeh Y., Awadallah A., Bsoul I., Juwhari H.: Structural and magnetic properties of mo-zn substituted (BaFe12-4xMoxZn3xO19) M-type hexaferrites. Material Science Research India, (2014), 11, 09-20.Search in Google Scholar

31. Awadallah A., Mahmood S., Maswadeh Y., Bsoul I., Awawdeh Q., Mohaidat H., Juwhari H.: Structural, magnetic, and Mossbauer spectroscopy of Cu substituted M-type hexaferrites. Materials Research Bulletin, (2016), 74, 192-201.Search in Google Scholar

32. Kang Y.M., Kwon Y.H., Kim M.H., Lee D.Y.: Enhancement of magnetic properties in Mn-Zn substituted M-type Sr-hexaferrites. Journal of Magnetism and Magnetic Materials, (2015), 382, 10-14.Search in Google Scholar

33. Joshi R., Singh C., Kaur D., Zaki H., Ghimire M.: Structural and magnetic properties of Co2+-W4+ ions doped M-type Ba-Sr hexaferrites synthesized by a ceramic method. Journal of Alloys and Compounds, (2017), 695, 909-914.Search in Google Scholar

34. Singh J., Singh C., Kaur D., Zaki H., Meena S.S.: Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+-Al3+ doped M-type BaSr hexaferrites synthesized by a ceramic method. Journal of Alloys and Compounds, (2017), 695, 1112-1121.Search in Google Scholar

35. Din M.F., Ahmad I., Ahmad M., Farid M.T., Iqbal M.A., Murtaza G., Khan M.A.: Influence of Cd substitution on structural, electrical and magnetic properties of M-type barium hexaferrites co-precipitated nanomaterials. Journal of Alloys and Compounds, (2014), 584, 646-651.Search in Google Scholar

36. Mosleh Z., Kameli P., Poorbaferani A., Ranjbar M., Salamati H.: Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. Journal of Magnetism and Magnetic Materials, (2016), 397, 101-107.Search in Google Scholar

37. Jamalian M.: An investigation of structural, magnetic and microwave properties of strontium hexaferrite nanoparticles prepared by a sol-gel process with doping Sn and Tb. Journal of Magnetism and Magnetic Materials, (2015), 378, 217-220.Search in Google Scholar

38. Kaur P., Chawla S.K., Meena S.S., Yusuf S.M., Bindra Narang S.: Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties. Ceramics International, (2016), 42(13), 14475-14489.Search in Google Scholar

39. Kaur P., Chawla S.K., Bindra Narang S., Pubby K.: Structural, magnetic and microwave absorption behavior of Co-Zr substituted strontium hexaferrites prepared using tartaric acid fuel for electromagnetic interference suppression. Journal of Magnetism and Magnetic Materials, (2017), 422, 304-314.Search in Google Scholar

40. Kaur P., Chawla S.K., Meena S.S., Yusuf S.M., Bindra Narang S.: Modulation of physico-chemical, magnetic, microwave and electromagnetic properties of nanocrystalline strontium hexaferrite by Co-Zr doping synthesized using citrate precursor sol-gel method. Ceramics International, (2017), 43(1), 590-598.Search in Google Scholar

41. Mudsainiyan R.K., Gupta M., Chawla S.K.: Physico-chemical and magnetic properties of Co-Zr doped Ba-hexaferrites using self-combustion and urea assisted method-A comparative study. Materials Today: Proceedings, (2016), 3(2), 507-512.Search in Google Scholar

42. Speakman S.A.: Estimating Crystallite Size Using XRD. The MIT Materials Research Science and Engineering Center (MRSEC), 2019.Search in Google Scholar

43. Rahimi F., Rahmati A., Mardani S.: Determination and analysis of structural and optical properties for thermally evaporated ZnO thin films. Soft Nanoscience Letters, (2014), 4(01), 1-5.Search in Google Scholar

44. Sardjono P., Suprapedi S., Muljadi M., Djauhari N.R.: Microstructure, physical properties, and magnetic flux density analysis of permanent magnet BaFe12O19 using milling and sintering preparation methods. Journal of Physics: Conference Series, (2016), 739(1), 1-6.Search in Google Scholar

45. Sepelak V., Myndyk M., Witte R., Röder J., Menzel D., Schuster R.H., Hahn H., Heitjans P., Becker K.D.: The mechanically induced structural disorder in barium hexaferrite, BaFe12O19, and its impact on magnetism. Faraday Discussions, (2014), 170, 121-135.Search in Google Scholar

46. Davarpanah A.M., Rahdar A., Azizi Dastnae M., Zeybek O., Beyzaei H.: (1-x)BaFe12O19/xCoFe2O4 hard/soft magnetic nanocomposites: Synthesis, physical characterization and antibacterial activities study. Journal of Molecular Structure, (2019), 1175, 445-449.Search in Google Scholar

47. Molaei M.J., Rahimipour M.R.: Microwave reflection loss of magnetic/dielectric nanocomposites of BaFe12O19/TiO2. Materials Chemistry and Physics, (2015), 167, 145-151.Search in Google Scholar

48. Al Dairy A.R., Al-Hmoud L.A., Khatatbeh H.A.: Magnetic and structural properties of barium hexaferrite nanoparticles doped with titanium. Symmetry, (2019), 11, 732.Search in Google Scholar

49. Manawan M., Saragi T., Sukandi A., Fachrudin B., Kurniawan A., Manaf E.P., Boedijono R.: Crystallite size determination of barium hexaferrite nanoparticles using WH-plot and WPPM. IOP Conf. Series: Journal of Physics: Conf. Series, (218), 1080, 012008.Search in Google Scholar

50. Choi M., Cho S., Song Y., Baek S., Kim H., Jung J., Lee H., Park C., Park S., Kim Y.: Synthesis and characterization of hollow BaFe12O19 submicron spheres for advance functional magnetic materials. Current Applied Physics, (2014), 14(9), 1208-1211.Search in Google Scholar

51. Awadallah A., Mahmood S.H., Maswadeh Y., Bsoul I., Aloqaily A.: Structural and magnetic properties of vanadium doped M-type barium hexaferrite (BaFe12-xVxO19). IOP Conf. Series: Materials Science and Engineering, (2015), 92, 012006.Search in Google Scholar

52. Uzun H., Fındık F., Salman S.: Malzeme Biliminin Temelleri. Değişim Publications, 2008.Search in Google Scholar

53. Mahmood S.H., Abu-Aljarayesh I.: Hexaferrite Permanent Magnetic Materials. Materials Research Forum LLC, 2016.10.21741/9781945291074Search in Google Scholar

54. Rusianto T., Waziz Wildan M., Abraha K., Kusmono K.: The magnetic and mechanical properties of sintered ceramic magnets SrxBa1-xFe12O19. Ijet-Ijens, (2015), 15(05), 41-45.Search in Google Scholar

55. Zafar A., Rahman A., Shahzada S., Anwar S., Khan M., Nisar A., Ahmad M., Karim S.: Electrical and magnetic properties of nano-sized Eu doped barium hexaferrites. Journal of Alloys and Compounds, (2017), 727, 683-690.Search in Google Scholar

56. Li L., Zhang Z., Xie Y., Zhao J.: Preparation, characterization and magnetic properties of the BaFe12O19-chitosan composites. Solid State Sciences, (2016), 57, 44-48.Search in Google Scholar

57. Almessiere M.A., Slimani Y., Gungunes H., Manikandan A., Baykal A.: Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results in Physics, (2019), 13, 102-166.Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials