Cite

1. Ali Z., Zhang C.X., Zhu J.C., Jin G., Wang Z.F., Wu Y.Q., Khan M.A., Dai J.G., and Tang Y.J.: The role of nanotechnology in food safety: Current status and future perspective. Journal of Nanoscience and Nanotechnology 18 (2018), 7983-8002.10.1166/jnn.2018.16395Search in Google Scholar

2. Bumbudsanpharoke N., Choi J.W., and Ko S.H.: Applications of nanomaterials in food packaging. Journal of Nanoscience and Nanotechnology 15 (2015), 6357-6372.10.1166/jnn.2015.10847Search in Google Scholar

3. Nakagawa Y., Tada M., Kojima K., Nakamaru H.: Effect of Nb contents on size of ferrite grains and Nb precipitates in ultra-low carbon steel for cans. ISIJ International 56 (2016), 1262-1267.10.2355/isijinternational.ISIJINT-2015-688Search in Google Scholar

4. Liu Z.W., Kang Y.L., Li Y.D.: Influence of continuous annealing soaking temperature on fish-scaling resistance of ultra-low carbon steel for porcelain enameling. Metallurgical Research and Technology 116 (2019), paper no. 205.10.1051/metal/2018058Search in Google Scholar

5. Ko Y.G., Suharto J., Lee J.S., Park B.H., Shin D.H.: Effect of roll speed ratio on deformation characteristics of IF steel subjected to differential speed rolling. Metals and Materials International, 19 (2013), 603-609.10.1007/s12540-013-3033-7Search in Google Scholar

6. Guo A., Misra R.D.K., Xu J., Guo B., and Jansto S.G.: Ultra high strength and low yield ratio of niobium-microalloyed 900 MPa pipeline steel with nano/ultrafine bainitic lath. Materials Science and Engineering A, 527 (2010), 3886-3892.10.1016/j.msea.2010.02.067Search in Google Scholar

7. Torres-Islas A., Molina-Ocampo A., Reyes-Hernandez R., Serna S., Acosta-Flores M., Juarez-Islas J.A.: Corrosion, microstructure and mechanical performance of ultra low C/Cr stabilized steel. International Journal of Electrochemistry Science, 10 (2015), 10029-10037.Search in Google Scholar

8. Bui A.H., Le H.: Strength and microstructure of cold-rolled IF steel. Acta Metallurgica Slovaca, 22 (2016), 35-43.10.12776/ams.v22i1.690Search in Google Scholar

9. Pan Z.Y., Gao B., Lai Q.Q., Chen X.F., Cao Y., Liu M.P., Zhou H.: Microstructure and mechanical properties of a cold-rolled ultrafine-grained dual-phase steel. Materials, 11 (2018), 1399-1409.10.3390/ma11081399Search in Google Scholar

10. Guo Y.H., Wang Z.D., Xu J.S., Wang G.D., and Liu X.H.: Texture evolution in a warm-rolled Ti-IF Steel during cold rolling and annealing. Journal of Materials Engineering and Performance, 18 (2009), 378-384.10.1007/s11665-008-9304-7Search in Google Scholar

11. Ono Y., Funakawa Y., Okuda K., Seto K., Ebisawa N., Inoue K., and Nagai Y.: Roles of solute C and grain boundary in strain aging behavior of fine-grained ultra-low carbon steel sheets. ISIJ International, 57 (2017), 1273-1281.10.2355/isijinternational.ISIJINT-2016-622Search in Google Scholar

12. Ławrynowicz Z.: Bainite transformation in experimental Fe-Cr-Mo-V-Ti-C steel. Advances in Materials Science, 13 (2013), 13-18.10.2478/adms-2013-0005Search in Google Scholar

13. Chen J.P., Kang Y.L., Hao Y.M., Liu G.M., Xiong A.M.: Microstructure and properties of Ti and Ti+Nb ultra-low-carbon bake hardened steels. Journal of Iron and Steel Research International, 16 (2009), 33-40.10.1016/S1006-706X(10)60024-6Search in Google Scholar

14. Shukla R., Ghosh S.K., Chakrabarti D., and Chatterjee S.: Characterisation of microstructure, texture and mechanical properties in ultra-low C Ti-B micro-alloyed steels. Metals and Materials International, 21 (2015), 85-95.10.1007/s12540-015-1010-zSearch in Google Scholar

15. Galan J., Samek L., Verleysen P., Verbeken K. and Houbaert Y.: Advanced high strength steels for automotive industry. Revista de Metallurgia, 48 (2012), 118-131.10.3989/revmetalm.1158Search in Google Scholar

16. Kestens L.A.I., Pirgazi H.: Texture formation in metal alloys with cubic crystal structures. Materials Science and Technology, 32 (2016), 1303-1315.10.1080/02670836.2016.1231746Search in Google Scholar

17. Ryde L.: Application of EBSD to analysis of microstructures in commercial steels. Materials Science and Technology, 22 (2006), 1297-1306.10.1179/174328406X130948Search in Google Scholar

18. Matthieu D., Isabelle A., Nicolas S., Jean-Marc O.: Intergranular stress corrosion cracking of friction stir welded nugget on a 2050-T8 aluminum alloy. Advances in Materials Science, 11 (2011), 44-50.10.2478/v10077-011-0016-6Search in Google Scholar

19. Cruz-Gandarilla F., Bolmaro R.E., Mendoza-Leon H.F., Salcedo-Garrido A.M., Cabanas-Moreno J.G.: Study of recovery and first recrystallization kinetics in CGO Fe3%Si steels using misorientation-derived parameters (EBSD). Journal of Microscopy, 275 (2019), 133-148.10.1111/jmi.12822Search in Google Scholar

20. Mun H.W., Lee S.I., Koo Y.M.: In-situ heating EBSD study of effects of cold reduction ratio on recrystallization and grain growth behaviors in 3% Si electrical steels. ISIJ International, 57 (2017), 1241-1245.10.2355/isijinternational.ISIJINT-2016-564Search in Google Scholar

21. Martinez-de-Guerenu A., Arizti F., Diaz-Fuentes M., Gutierrez I.: Recovery during annealing in a cold rolled low carbon steel. Part I: Kinetics and microstructure characterization. Acta Materialia, 52 (2004), 3657-3664.10.1016/j.actamat.2004.04.019Search in Google Scholar

22. Le H., Nguyen C.S., Bui A.H.: Experimental processing of ultra-low carbon steel using vacuum treatment. Acta Metallurgica Slovaca, 24 (2018), 4-12.10.12776/ams.v24i1.1070Search in Google Scholar

23. Song R., Ponge D., Kaspar R., Raabe D.: Grain boundary characterization and grain size measurement in an ultra-grained steel. Zeitschrit fur Metallkunde, 95 (2004), 513-517.10.3139/146.017983Search in Google Scholar

24. Ghosh S., Singh A.K., Mula S.: Effect of critical temperatures on microstructures and mechanical properties of Nb-Ti stabilized IF steel processed by multiaxial forging. Materials and Design, 100 (2016), 47-57.10.1016/j.matdes.2016.03.107Search in Google Scholar

25. Ungar T., Ott S., Sanders P.G., Borbely A., Weertman J.R.: Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Materialia, 46 (1998), 3693-3699.10.1016/S1359-6454(98)00001-9Search in Google Scholar

26. Gautam J., Petrov R., Kestens L., Leunis E.: Surface energy controlled α-γ- α transformation texture and microstructure character study in ULC steels alloyed with Mn and Al. Journal of Materials Science, 43 (2008), 3969-3975.10.1007/s10853-007-2292-4Search in Google Scholar

27. Lim S.M., Wahabi M.E., Desrayaud C., Montheillet F.: Microstructure refinement of an Fe-C alloy within the ferretic range via two different strain paths. Materials Science and Engineering A, 460 (2007), 532-541.10.1016/j.msea.2007.01.106Search in Google Scholar

28. Azushima A., Kopp R., Korhonen A., Yang D.Y., Micari F., Lahoti G.D., Groche P., Yanagimoto J., Tsuji N., Rosochowski A., Yanagida A.: Severe plastic deformation (SPD) processes for metal. CIRP Annals-Manufacturing Technology, 57 (2008), 716-735.10.1016/j.cirp.2008.09.005Search in Google Scholar

29. Lee S.H., Saito Y., Park K.T., and Shin D.H.: Microstructures and mechanical properties of ultra low carbon IF steel processed by accumulative roll bonding process, Materials Transactions, 43 (2002), 2320-2325.10.2320/matertrans.43.2320Search in Google Scholar

30. Xu C., Furukawa M., Horita Z., Langdon T.G.: Severe plastic deformation as a processing tool for developing superplastic metals. Journal of Alloys Compounds, 378 (2004), 27-34.10.1016/j.jallcom.2003.10.065Search in Google Scholar

31. Kvackaj, T., Zemko, M., Kuskulic, T., Kocisko, R., Besterci, M., Dobatkin, S., Molnarova, M.: Nanostructure formation and numerical simulation of IF steel in ECAP. High Temperature Materials and Processes, 26 (2007), 147-150.10.1515/HTMP.2007.26.2.147Search in Google Scholar

32. Wang Q., Zhang S., Zhang C.H., Wu C.L., Wang J.Q., Chen J., Sun Z.L.: Microstructure evolution and EBSD analysis of a grade steel fabricated by laser additive manufacturing. Vacuum, 141 (2017), 68-81.10.1016/j.vacuum.2017.03.021Search in Google Scholar

33. Cizek J., Janecek M., Krajnak T., Straska J., Hruska P., Gubicza J., Kim H.S.: Structural characterization of ultrafine-grained interstitial-free steel prepared by severe plastic deformation. Acta Materialia, 105 (2016), 258-272.10.1016/j.actamat.2015.12.039Search in Google Scholar

34. Wenk H.R., Huensche I., and Kenstens L.: In-situ observation of texture changes during phase transformations in ultra-low carbon steel. Metallurgical and Materials Transactions A, 38 (2007), 261-267.10.1007/s11661-006-9033-1Search in Google Scholar

35. Wakita M., Suzuki S.: In-situ observation of microstructure change in steel by EBSD. Nippon Steel & Sumitomo Metal Technical Report, 114 (2017), 32-37.Search in Google Scholar

36. Kitahara H., Ueji R., Ueda M., Tsuji N., and Minanimo Y.: Crystallographic analysis of plate martensite in Fe-28.5 at.% Ni by FE-SEM/EBSD. Materials Characterization, 54 (2005), 378-386.10.1016/j.matchar.2004.12.015Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials