Acceso abierto

Analogue Modelling of Flow Patterns in Bobbin Friction Stir Welding by the Dark-Field/Bright-Field Illumination Method


Cite

1. Tashkandi MA, Al-Jarrah JA, Ibrahim M. Increasing of the Mechanical Properties of Friction Stir Welded Joints of 6061 Aluminum Alloy by Introducing Alumina Particles. Advances in Materials Science. 2017, 17(2), 29-40.Search in Google Scholar

2. Thomas, W.; Nicholas, E.; Needham, J.; Murch, M.; Temple-Smith, P.; Dawes, C. Friction stir butt welding, international patent application no. PCT/GB92 Patent application 1991.Search in Google Scholar

3. Thomas, W.; Wiesner, C.; Marks, D.; Staines, D. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials. Science and Technology of Welding and Joining 2009, 14, 247-253.Search in Google Scholar

4. Threadgill, P.; Leonard, A.; Shercliff, H.; Withers, P. Friction stir welding of aluminium alloys. International Materials Reviews 2009, 54, 49-93.Search in Google Scholar

5. Fuse, K.; Badheka, V. Bobbin tool friction stir welding: A review. Science and Technology of Welding and Joining 2019, 24, 277-304.Search in Google Scholar

6. Goetze, P.; Kopyściański, M.; Hamilton, C.; Dymek, S. Comparison of dissimilar aluminum alloys joined by friction stir welding with conventional and bobbin tools. In Friction stir welding and processing X, Springer: 2019, 3-12.10.1007/978-3-030-05752-7_1Search in Google Scholar

7. Iwaszko, J.; Kudła, K. Effect of friction stir processing (FSP) on microstructure and hardness of almg10/sic composite. Bulletin of the Polish Academy of Sciences. Technical Sciences 2019, 67, 185-192.Search in Google Scholar

8. Yang, C.; Ni, D.; Xue, P.; Xiao, B.; Wang, W.; Wang, K.; Ma, Z. A comparative research on bobbin tool and conventional friction stir welding of al-mg-si alloy plates. Materials Characterization 2018, 145, 20-28.Search in Google Scholar

9. Xu, W.; Luo, Y.; Fu, M. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-t7452 aluminum alloy. Materials Characterization 2018, 138, 48-55.Search in Google Scholar

10. Kalemba-Rec, I.; Kopyściański, M.; Miara, D.; Krasnowski, K. Effect of process parameters on mechanical properties of friction stir welded dissimilar 7075-T651 and 5083-H111 aluminum alloys. The International Journal of Advanced Manufacturing Technology 2018, 97, 2767-2779.Search in Google Scholar

11. Tamadon, A.; Pons, D.J.; Clucas, D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling. Applied System Innovation 2020, 3, 2.10.3390/asi3010002Search in Google Scholar

12. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding. Metals 2019, 9, 1059.10.3390/met9101059Search in Google Scholar

13. Kluz, R.; Kubit, A.; Trzepiecinski, T.; Faes, K.; Bochnowski, W. A weighting grade-based optimization method for determining refill friction stir spot welding process parameters. Journal of Materials Engineering and Performance 2019, 28, 6471-6482.Search in Google Scholar

14. Tamadon, A.; Pons, D.; Sued, M.; Clucas, D.; Wong, E. Preparation of plasticine material for analogue modelling, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.Search in Google Scholar

15. Tamadon, A.; Pons, D.; Sued, M.; Clucas, D.; Wong, E. Analogue modelling of bobbin tool friction stir welding, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.Search in Google Scholar

16. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Formation mechanisms for entry and exit defects in bobbin friction stir welding. Metals 2018, 8, 33.10.3390/met8010033Search in Google Scholar

17. Sued, M.; Tamadon, A.; Pons, D. Material flow visualization in bobbin friction stir welding by analogue model. Proceedings of Mechanical Engineering Research Day 2017, 2017, 1-2.Search in Google Scholar

18. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Development of metallographic etchants for the microstructure evolution of A6082-T6 BFSW welds. Metals 2017, 7, 423.10.3390/met7100423Search in Google Scholar

19. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Thermomechanical grain refinement in AA6082-T6 thin plates under bobbin friction stir welding. Metals 2018, 8, 375.10.3390/met8060375Search in Google Scholar

20. Liu, X.; Wu, C.; Padhy, G.K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scripta Materialia 2015, 102, 95-98.Search in Google Scholar

21. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Texture evolution in AA6082-T6 BFSW welds: Optical microscopy and EBSD characterisation. Materials 2019, 12, 3215.10.3390/ma12193215680405131581446Search in Google Scholar

22. Tamadon, A.; Pons, D.J.; Clucas, D. AFM characterization of stir-induced micro-flow features within the AA6082-T6 BFSW welds. Technologies 2019, 7, 80.10.3390/technologies7040080Search in Google Scholar

23. Padhy, G.; Wu, C.; Gao, S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review. Journal of Materials Science & Technology 2018, 34, 1-38.Search in Google Scholar

24. Sued, M.; Pons, D.; Lavroff, J.; Wong, E.-H. Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process. Materials & Design 2014, 54, 632-643.Search in Google Scholar

25. Rhodes, C.; Mahoney, M.; Bingel, W.; Spurling, R.; Bampton, C. Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Materialia 1997, 36, 69-75.Search in Google Scholar

26. Colligan, K. Material flow behavior during friction welding of aluminum. Welding Journal 1999, 75, 229-237.Search in Google Scholar

27. Dialami, N.; Cervera, M.; Chiumenti, M. Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding. Metals 2019, 9, 28.10.3390/met9010028Search in Google Scholar

28. Dialami, N.; Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C.; Ponthot, J.P. Material flow visualization in friction stir welding via particle tracing. International Journal of Material Forming 2015, 8, 167-181.Search in Google Scholar

29. He, X.C. Computational investigation of mechanical behaviour of FSW joints, Applied Mechanics and Materials, 2013, 389, 260-266.10.4028/www.scientific.net/AMM.389.260Search in Google Scholar

30. Hilgert, J.; Dos Santos, J.; Huber, N. Shear layer modelling for bobbin tool friction stir welding. Science and Technology of Welding and Joining 2012, 17, 454-459.Search in Google Scholar

31. Hilgert, J.; Hütsch, L.L.; dos Santos, J.; Huber, N. In Material flow around a bobbin tool for friction stir welding, Excerpt from the Proceedings of the COMSOL Conference, 2010.Search in Google Scholar

32. Gadakh, V.S.; Kumar, A.; Vikhe Patil, G.J. Analytical modeling of the friction stir welding process using different pin profiles. Welding Journal 2015, 94, 115-124.Search in Google Scholar

33. He, X.; Gu, F.; Ball, A. A review of numerical analysis of friction stir welding. Progress in Materials Science 2014, 65, 1-66.Search in Google Scholar

34. Khan, N.Z.; Siddiquee, A.N.; Khan, Z.A.; Shihab, S.K. Investigations on tunneling and kissing bond defects in fsw joints for dissimilar aluminum alloys. Journal of Alloys and Compounds 2015, 648, 360-367.Search in Google Scholar

35. Kim, S.-D.; Yoon, J.-Y.; Na, S.-J. A study on the characteristics of FSW tool shapes based on CFD analysis. Welding in the World 2017, 61, 915-926.Search in Google Scholar

36. Liechty, B.; Webb, B. Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools and Manufacture 2008, 48, 1474-1485.Search in Google Scholar

37. Moradi, M.M.; Aval, H.J.; Jamaati, R. Effect of tool pin geometry and weld pass number on microstructural, natural aging and mechanical behaviour of sic-incorporated dissimilar friction-stir-welded aluminium alloys. Sādhanā 2019, 44, 9.10.1007/s12046-018-0997-5Search in Google Scholar

38. Patel, V.; Li, W.; Vairis, A.; Badheka, V. Recent development in friction stir processing as a solid-state grain refinement technique: Microstructural evolution and property enhancement. Critical Reviews in Solid State and Materials Sciences 2019, 44, 378-426.Search in Google Scholar

39. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-based anatomy of bobbin friction-stirred weld; AA6082-T6 aluminium plate and analogue plasticine model. Applied Mechanics 2020, 1, 3-19.Search in Google Scholar

40. Tamadon, A.; Pons, D.J.; Clucas, D. Microstructural study on thermomechanical behaviour of 6082-T6 aluminium BFSW weld plates. In Materials@UC 2018 Conference, Christchurch, New Zealand, 2018.Search in Google Scholar

41. Tamadon, A.; Pons, D.J.; Clucas, D. Thermomechanical performance of bobbin tool design as an innovative variant for friction stir welding. In Manufacturing and Design Conference (MaD 2019) Auckland, New Zealand, 2019.Search in Google Scholar

42. Tamadon, A. Characterization of flow-based bobbin friction stir welding process. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2019.Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials