Acceso abierto

The Influence of Pulsating Tensile Stress on Residual Magnetic Field of P91 Steel Samples


1. Roskosz M., Metal magnetic memory testing of welded joints of ferritic and austenitic steels, NDT&E International, 44 (2011) 305–310, doi:10.1016/j.ndteint.2011.01.00810.1016/j.ndteint.2011.01.008Search in Google Scholar

2. Roskosz M., Bieniek M., Evaluation of residual stress in ferromagnetic steels based on residual magnetic field measurements NDT&E International, 45 (2012) 55–62, doi:10.1016/j.ndteint.2011.09.00710.1016/j.ndteint.2011.09.007Search in Google Scholar

3. Kwaśniewski J, Roskosz M., Witoś M., Molski Sz., Applications of magnetometric sensors based on amorphous materials in diagnostics of wire ropes. Archives of Mining Sciences, 63 (1) (2018), 221–227.Search in Google Scholar

4. Kwaśniewski J., Application of the wavelet analysis to inspection of compact ropes using a high-efficiency device. Archives of Mining Sciences, 58(1) (2013), 159–164.10.2478/amsc-2013-0011Search in Google Scholar

5. Sheng Bao, Meili Fu, Huangjie Lou, Shuzhuang Bai: Defect identification in ferromagnetic steel based on residual magnetic field measurements. Journal of Magnetism and Magnetic Materials 441 (2017), 590–597.10.1016/j.jmmm.2017.06.056Search in Google Scholar

6. Juwei Zhang, Xiaojiang Tan, Pengbo Zheng: Non-Destructive Detection ofWire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing. Sensors, 17 (2017), 608; doi:10.3390/s1703060810.3390/s17030608Search in Google Scholar

7. Stegemann R., Cabeza S., Lyamkina V., Brunoa G., Pittner A., Wimpory R., Boin M., Kreutzbruck M., Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings. Journal of Magnetism and Magnetic Materials 426 (2017) 580–587.10.1016/j.jmmm.2016.11.102Search in Google Scholar

8. Haihong Huang and Zhengchun Qian, Effect of Temperature and Stress on Residual Magnetic Signals in Ferromagnetic Structural Steel. IEEE Transactions On Magnetics, 53(1) (2017).10.1109/TMAG.2016.2613064Search in Google Scholar

9. Haihong Huang, Zhengchun Qian, Cheng Yang, Gang Han, Zhifeng Liu, Magnetic memory signals of ferromagnetic weldment induced by dynamic bending load. Nondestructive Testing and Evaluation, 32(2), 166–184, DOI: 10.1080/10589759.2016.115930710.1080/10589759.2016.1159307Search in Google Scholar

10. Haihong Huang, Gang Han, Zhengchun Qian, Zhifeng Liu, Characterizing the magnetic memory signals on the surface of plasma transferred arc cladding coating under fatigue loads. Journal of Magnetism and Magnetic Materials, 443 (2017), 281–286.10.1016/j.jmmm.2017.07.067Search in Google Scholar

11. Venkatachalapathi N., Jameelbasha S.MD, Janardhan Raju G., Raghavulu P., Characterization of Fatigued Steel States with Metal Magnetic Memory Method. Materials Today, Proceedings 5 (2018) 8645–8654.10.1016/j.matpr.2018.04.002Search in Google Scholar

12. Jiles D. C., AthertonD. L., Theory of ferromagnetic hysteresis, J.Magn. Magn. Mater., 61 (1986), 48–61.10.1016/0304-8853(86)90066-1Search in Google Scholar

13. Jiles D. C., Introduction to Magnetism and Magnetic Materials. London: Chapman and Hall, 1991.10.1007/978-1-4615-3868-4Search in Google Scholar

14. Jiles D. C., Theory of the Magnetomechanical Effect, J. Phys. D: Appl. Phys., 28 (1995) 1537 1546.10.1088/0022-3727/28/8/001Search in Google Scholar

15. Search in Google Scholar

16. Search in Google Scholar

17. in Google Scholar

18. in Google Scholar

19. Search in Google Scholar

Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials