Acceso abierto

Investigating the Impact of Different Bacillus thuringiensis Strains on Ascaris suum Intestinal Changes

, , , , ,  y   
18 mar 2025

Cite
Descargar portada

Kaminsky RA: New class of anthelmintics effective against drug-resistant nematodes. Nature 2008, 452:176-180. Search in Google Scholar

Silva TED, Barbosa FS, Magalhães LMD, Gazzinelli-Guimarães PH, Dos Santos AC, Nogueira DS, Resende NM, Amorim CC, Gazzinelli-Guimarães AC, Viana AG, Geiger SM, Bartholomeu DC, Fujiwara RT, Bueno LL. Unraveling Ascaris suum experimental infection in humans. Microbes Infect. 2021, 23(8):104836. Search in Google Scholar

Kahn TW, Duck NB, McCarville MT, Schouten LC, Schweri K, Zaitseva J, Daum J: Bacillus thuringiensis Cry protein controls soybean cyst nematode in transgenic soybean plants. Nat Commun 2021, 12(1):3380. Search in Google Scholar

Urban JF, Nielsen MK, Gazzola D, Xie Y, Beshah E, Hu Y: An inactivated bacterium (paraprobiotic) expressing Bacillus thuringiensis Cry5B as a therapeutic for Ascaris and Parascaris spp. infections in large animals. One Health 2021, 12:100241. Search in Google Scholar

Lőw P, Molnár K, Kriska G: Dissection of a roundworm (Ascaris suum). Atlas of Animal Anatomy and Histology 2016, 11-25. Search in Google Scholar

Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV: Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 2003, 100(5):2760-2765. Search in Google Scholar

Gonzalez-Vazquez MC, Vela-Sanchez RA, Rojas-Ruiz NE, Carabarin-Lima A: Importance of Cry proteins in biotechnology: Initially a bioinsecticide, now a vaccine adjuvant. Life (Basel) 2021, 11(10):999. Search in Google Scholar

Guo Y, Weng M, Sun Y, Carballar-Lejarazú R, Wu S, Lian C: Bacillus thuringiensis toxins with nematocidal activity against the pinewood nematode Bursaphelenchus xylophilus. J Invertebr Pathol 2022, 189:107726. Search in Google Scholar

Draganić V, Lozo J, Biočanin M, Dimkić I, Garalejić E, Fira Đ, Stanković S, Berić T: Genotyping of Bacillus spp. isolate collection from natural samples. Genetika 2017, 49:445-56. Search in Google Scholar

Atanasković I, Marjanović DS, Trailović S, Fira D, Stanković S, Lozo J: Growth phase-dependent nematocidal activity of Bacillus thuringiensis strains from natural samples. Biocontrol Sci Technol 2020, 30(11):1199-1211. Search in Google Scholar

Trailović SM, Marjanović DS, Nedeljković Trailović J, Robertson AP, Martin RJ: Interaction of carvacrol with the Ascaris suum nicotinic acetylcholine receptors and gamma-aminobutyric acid receptors, potential mechanism of antinematodal action. Parasitol Res 2015, 114(8):3059-3068. Search in Google Scholar

Marjanović DS, Zdravković N, Milovanović M, Trailović JN, Robertson AP, Todorović Z, Trailović SM: Carvacrol acts as a potent selective antagonist of different types of nicotinic acetylcholine receptors and enhances the effect of monepantel in the parasitic nematode Ascaris suum. Vet Parasitol 2020, 278:109031. Search in Google Scholar

Tian B, Yang J, Zhang KQ: Bacteria used in the biological control of plant-parasitic nematodes: Populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 2007, 61(2):197-213. Search in Google Scholar

Geng C, Liu Y, Li M, Tang Z, Muhammad S, Zheng J, Wan D, Peng D, Ruan L, Sun M: Dissimilar crystal proteins Cry5Ca1 and Cry5Da1 synergistically act against Meloidogyne incognita and delay Cry5Ba-based nematode resistance. Appl Environ Microbiol 2017, 83(18). Search in Google Scholar

Wilcks A, Hansen BM, Hendriksen NB, Licht TR: Persistence of Bacillus thuringiensis bioinsecticides in the gut of human-flora-associated rats. FEMS Immunol Med Microbiol 2006, 48(3):410-8. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicina, Medicina veterinaria