Acceso abierto

Identification of endoplasmic reticulum stress response genes in homologous vs. heterologous asf infections in vitro


Cite

Eustace Montgomery R: On A Form of Swine Fever Occurring in British East Africa (Kenya Colony). J Comp Pathol Ther 1921, 34:159–191. Search in Google Scholar

OIE https://www.oie.int/app/uploads/2022/03/asf-report7.pdf Search in Google Scholar

Dixon LK, Stahl K, Jori F, Vial L, Pfeiffer DU: African Swine Fever Epidemiology and Control. Annu Rev Anim Biosci 2020, 8:221–246. Search in Google Scholar

Ruiz Gonzalvo F, Carnero ME, Bruyel V: Immunological responses of pigs to partially attenuated ASF and their resistance to virulent homologous and heterologous viruses. In FAO/CEC Expert Consultation in ASF Research; Wilkinson, P.J., Ed.; FAO: Rome, Italy, 1981; pp. 206–216. Search in Google Scholar

Zsak L, Caler E, Lu Z, Kutish GF, Neilan JG, Rock DL: A Nonessential African Swine Fever Virus Gene UK Is a Significant Virulence Determinant in Domestic Swine. J Virol 1998, 72:1028–1035. Search in Google Scholar

Lewis T, Zsak L, Burrage TG, Lu Z, Kutish GF, Neilan JG, Rock DL: An African Swine Fever Virus ERV1-ALRHomologue, 9GL, Affects Virion Maturation and Viral Growth in Macrophages and Viral Virulence in Swine. J Virol 2000, 74:1275–1285. Search in Google Scholar

Leitão A, Cartaxeiro C, Coelho R, Cruz B, Parkhouse RME, Portugal FC, Vigário JD, Martins CLV: The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J Gen Virol 2001, 82:513–523. Search in Google Scholar

Balyshev V, Fedorishhev I, Salina M: Study of serotype interactions of ASF virus strains both in vitro and in vivo. Virusniye bolezni zhivotnikh 1995, 230. Search in Google Scholar

Sereda A, Balyshev V: Antigenic diversity of African swine fever viruses. Vopr Virusol 2011, 56:38-42. Search in Google Scholar

Iyer LM, Balaji S, Koonin EV, Aravind L: Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 2006, 117(1):156-84. Search in Google Scholar

Romero-Brey I, Bartenschlager R: Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and As-sembly. Viruses 2016, 7;8(6):160. Search in Google Scholar

Moss B: Poxvirus membrane biogenesis. Virology 2015, 479-480:619-26. Search in Google Scholar

Suarez C, Andres G, Kolovou A, Hoppe S, Salas ML, Walther P, Krijnse Locker J: African swine fever virus assembles a single membrane derived from rupture of the endoplasmic reticulum. Cell Microbiol 2015, 17(11):1683-98. Search in Google Scholar

Schwarz DS, Blower MD: The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell Mol Life Sci 2016, 73:79–94. Search in Google Scholar

Di Conza G, Ho PC: ER Stress Responses: An Emerging Modulator for Innate Immunity Cells 2020, 12;9(3):695. Search in Google Scholar

Walter P, Ron D: The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011, 25;334(6059):1081-6. Search in Google Scholar

Hetz C, Papa FR: The Unfolded Protein Response and Cell Fate Control. Mol Cell 2018, 18;69(2):169-181. Search in Google Scholar

Smith JA, Schmechel SC, Raghavan A, Abelson M, Reilly C, Katze MG, Kaufman RJ, Bohjanen PR, Schiff LA: Reovirus induces and benefits from an integrated cellular stress response. J Virol 2006, 80(4):2019-33. Search in Google Scholar

Huang ZM, Tan T, Yoshida H, Mori K, Ma Y, Yen TS: Activation of hepatitis B virus S promoter by a cell type-restricted IRE1-dependent pathway induced by endoplasmic reticulum stress. Mol Cell Biol 2005, 25(17):7522-33. Search in Google Scholar

Galindo I, Hernáez B, Muñoz-Moreno R, Cuesta-Geijo M.A, Dalmau-Mena I, Alonso C: The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis 2012, 5;3(7):e341. Search in Google Scholar

Netherton CL, Parsley JC, Wileman T: African swine fever virus inhibits induction of the stress-induced proapoptotic transcription factor CHOP/GADD153. J Virol 2004, 78(19):10825-8. Search in Google Scholar

Xia N, Wang H, Liu X, Shao Q, Ao D, Xu Y, Jiang S, Luo J, Zhang J, Chen N, Meurens F, Zheng W, Zhu J: African Swine Fever Virus Structural Protein p17 Inhibits Cell Proliferation through ER Stress-ROS Mediated Cell Cycle Arrest. Vruses 2020. Search in Google Scholar

Wang Q, Zhou L, Wang J, Su D, Li D, Du Y, Yang G, Zhang G, Chu B: African Swine Fever Virus K205R Induces ER Stress and Consequently Activates Autophagy and the NF-κB Signaling Pathway. Viruses 2022, 15;14(2):394. Search in Google Scholar

Kholod N, Koltsov A, Koltsova G: Analysis of gene expression in monocytes of immunized pigs after infection with homologous or heterologous African swine fever virus. Front Vet Sci 2022, 12;9:936978. Search in Google Scholar

Koltsov A, Tulman ER, Namsrayn S, Kutish GF, Koltsova G: Complete genome sequence of virulent genotype I African swine fever virus strain K49 from the Democratic Republic of the Congo, isolated from a domestic pig (Sus scrofa domesticus). Arch Virol 2022, 167(11):2377-2380. Search in Google Scholar

Titov I, Burmakina G, Morgunov Y, Morgunov S, Koltsov A, Malogolovkin A, Kolbasov D: Virulent strain of African swine fever virus eclipses its attenuated derivative after challenge. Arch Virol 2017, 162. Search in Google Scholar

Reed LJ, Muench H: A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938, 493–497. Search in Google Scholar

Koltsova G, Koltsov A, Krutko S, Kholod N, Tulman ER, Kolbasov D: Growth Kinetics and Protective Efficacy of Attenuated ASFV Strain Congo with Deletion of the EP402 Gene. Viruses 2021. Search in Google Scholar

King DP, Reid SM, Hutchings GH, Grierson SS, Wilkinson PJ, Dixon LK, Bastos ADS, Drew TW: Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. J Virol Methods 2003, 107. Search in Google Scholar

Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014, 15:1–21. Search in Google Scholar

Hetz C, Zhang K, Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020, 21(8):421-438. Search in Google Scholar

Choi JA, Song CH: Insights Into the Role of Endoplasmic Reticulum Stress in Infectious Diseases. Front Immunol 2020, 31;10:3147. Search in Google Scholar

Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, Gotoh T, Akira S, Bouillet P, Strasser A: ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 2007. Search in Google Scholar

Tabas I, Ron D: Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011, 13(3):184-90. Search in Google Scholar

Cox JS, Shamu CE, Walter P: Transcriptional induction of genes encoding endoplasmic reticulum resident proteins re-quires a transmembrane protein kinase. Cell. 1993, 18;73(6):1197-206. doi: 10.1016/0092-8674(93)90648-a. Search in Google Scholar

Chen Y, Brandizzi F: IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 2013, 23(11):547-55. Search in Google Scholar

Glimcher LH: XBP1: the last two decades. Ann Rheum Dis 2010, 1:i67-71. Search in Google Scholar

Haze K, Yoshida H, Yanagi H, Yura T, Mori K: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999, 10(11):3787-99. Search in Google Scholar

Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS, Goldstein JL: ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 2000, 6(6):1355-64. Search in Google Scholar

Hassler JR, Scheuner DL, Wang S, Han J, Kodali VK, Li P, Nguyen J, George JS, Davis C, Wu SP, Bai Y, Sartor M, Cavalcoli J, Malhi H, Baudouin G, Zhang Y, Yates, JR III, Itkin-Ansari P, Volkmann N, Kaufman RJ: The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells. PLoS Biol 2015, 15;13(10):e1002277. Search in Google Scholar

Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, Song B, Yau GD, Kaufman RJ: ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 2007. Search in Google Scholar

Shoulders MD, Ryno LM, Genereux JC, Moresco JJ, Tu PG, Wu C, Yates JR 3rd, Su AI, Kelly JW, Wiseman RL: Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep 2013, 25;3(4):1279-92. Search in Google Scholar

Almasy KM, Davies JP, Lisy SM, Tirgar R, Tran SC, Plate L: Small-molecule endoplasmic reticulum proteostasis regulator acts as a broad-spectrum inhibitor of dengue and Zika virus infections. Proc Natl Acad Sci USA 2021, 19;118(3). Search in Google Scholar

Zhou Y, Qi B, Gu Y, Xu F, Du H, Li X, Fang W: Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK-15 Cells. Viruses 2016, 20;8(2):56. Search in Google Scholar

Mulvey M, Arias C, Mohr I: Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. J Virol 2007, 81(7):3377-90. Search in Google Scholar

Baltzis D, Qu LK, Papadopoulou S, Blais JD, Bell JC, Sonenberg N, Koromilas AE: Resistance to vesicular stomatitis virus infection requires a functional cross talk between the eukaryotic translation initiation factor 2alpha kinases PERK and PKR. J Virol 2004, 78(23):12747-61. Search in Google Scholar

Zhang HM, Ye X, Su Y, Yuan J, Liu Z, Stein DA, Yang D: Coxsackievirus B3 infection activates the unfolded protein response and induces apoptosis through downregulation of p58IPK and activation of CHOP and SREBP1. J Virol 2010, 84(17):8446-59. Search in Google Scholar

Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, Defilippis V, Früh K, Mason PW, Nikolich-Zugich J, Nelson JA: West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol. 2007, 81(20):10849-60, doi:10.1128/JVI.01151-07. Search in Google Scholar

Fung TS, Liu DX: The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology 2019, 533:34-44. Search in Google Scholar

Lee CH, Griffiths S, Digard P, Pham N, Auer M, Haas J, Grey F: Asparagine Deprivation Causes a Reversible Inhibition of Human Cytomegalovirus Acute Virus Replication. MBio 2019, 10(5):e01651-1. Search in Google Scholar

Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H: TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 2005, 23;24(6):1243-55. Search in Google Scholar

Denard B, Seemann J, Chen Q, Gay A, Huang H, Chen Y, Ye J: The membrane-bound transcription factor CREB3L1 is activated in response to virus infection to inhibit proliferation of virus-infected cells. Cell Host Microbe 2011, 21;10(1):65-74. Search in Google Scholar

Kondo S, Saito A, Hino S, Murakami T, Ogata M, Kanemoto S, Nara S, Yamashita A, Yoshinaga K, Hara H, Imaizumi K: BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of endoplasmic reticulum stress transducer. Mol Cell Biol 2007, 27(5):1716-29. Search in Google Scholar

Byun H, Gou Y, Zook A, Lozano MM, Dudley JP: ERAD and how viruses exploit it. Front Microbiol 2014, 3;5:330. Search in Google Scholar

Celli J, Tsolis RM: Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat Rev Microbiol 2015, 13(2):71-82. Search in Google Scholar

Lilley BN, Ploegh HL: A membrane protein required for dislocation of misfolded proteins from the ER. Nature 2004, 24;429(6994):834-40. Search in Google Scholar

Lai CW, Otero JH, Hendershot LM, Snapp E: ERdj4 protein is a soluble endoplasmic reticulum (ER) DnaJ family protein that interacts with ER-associated degradation machinery. J Biol Chem 2012, 9;287(11):7969-78. Search in Google Scholar

Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA: A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 2004, 24;429(6994):841-7. Search in Google Scholar

Cormier JH, Tamura T, Sunryd JC, Hebert DN: EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 2009, 12;34(5):627-33. Search in Google Scholar

Schulze A, Standera S, Buerger E, Kikkert M, van Voorden S, Wiertz E, Koning F, Kloetzel PM, Seeger M. The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J Mol Biol 2005, 16;354(5):1021-7. Search in Google Scholar

Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR et al.: Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 1996, 384, 432–438. Search in Google Scholar

Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL: The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996, 8;84(5):769-79. Search in Google Scholar

Hoie JA, Alpers JD, Rackowski JL, Huebner K, Haggarty BS, Cedarbaum AJ et al.: Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV. Science 1986, 234, 1123–1127. Search in Google Scholar

Lazar C, Macovei A, Petrescu S, Branza-Nichita N: Activation of ERAD pathway by human HBV modulates viral and subviral particle production. PLoSONE 2012, 7:e34169. Search in Google Scholar

Saeed M, Suzuki R, Watanabe N, Masaki T, Tomonaga M, Muhammad A. et al.: Role of the endoplasmic reticu-lum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles. J Biol Chem 2011, 286:37264–37273. Search in Google Scholar

Nguyen CC, Siddiquey MNA, Zhang H, Li G, Kamil JP: Human Cytomegalovirus Tropism Modulator UL148 Interacts with SEL1L, a Cellular Factor That Governs Endoplasmic Reticulum-Associated Degradation of the Viral Envelope Glycoprotein g. J Virol 2018, 29;92(18). Search in Google Scholar

eISSN:
1820-7448
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Veterinary Medicine