Acceso abierto

Modeling the current and future distribution of Brucellosis under climate change scenarios in Qinghai Lake basin, China


Cite

Marvi A, Asadi-Aliabadi M, Darabi M, Abedi G, Siamian H, Rostami-Maskopaee F: Trend Analysis and Affecting Components of Human Brucellosis Incidence During 2006 to 2016. Med Arch (Sarajevo, Bosnia and Herzegovina) 2018,72(1):17-21. Search in Google Scholar

Morwal S, Sharma S: Bacterial Zoonosis‐A Public Health Importance. J of Dairy Vet and Anim Res 2017,5(2):56-59. Search in Google Scholar

WHO: Brucellosis 2020 [cited 2022]. Available from: https://www.who.int/news-room/fact-sheets/detail/brucellosis. Search in Google Scholar

Doganay M, Demiraslan H: Human anthrax as a re-emerging disease. Rec Pat Anti Drug Dis 2015,10(1):10-29. Search in Google Scholar

Dean AS, Bonfoh B, Kulo AE, Boukaya GA, Amidou M, Hattendorf J, Pilo P, Schelling E: Epidemiology of Brucellosis and Q Fever in Linked Human and Animal Populations in Northern Togo. PLoS One 2013,8(8):e71501. Search in Google Scholar

Godfroid J: Brucellosis in wildlife. Rev Sci Tech 2002,21(2):277-286. Search in Google Scholar

Corbel MJ, Wray C: The Effect of Natural Infection with Salmonella Urbana on the Serological Status of Cattle in Relation to Tests for Brucellosis. Br Vet J 1975,131(3):324-334. Search in Google Scholar

Jones TC.: Infectious Diseases of Animals. vol. 1 and vol. 2, Diseases Due to Bacteria. A. W. Stableforth and I. A. Galloway, Eds. Academic Press, New York; Butterworths, London, 1959. 396 pp.; 414 pp. Illus; 2 vols. Sci 1960,132(3418):30-31. Search in Google Scholar

Thorne ET, Honess RE: Diseases of wildlife in Wyoming. 1982. Search in Google Scholar

Corbel, M.J: Brucellosis in humans and animals. WHO 2006, Geneva. Search in Google Scholar

Olabimi IO, Ileke KD, Adu BW, Arotolu TE: Potential distribution of the primary malaria vector Anopheles gambiae Giles [Diptera: Culicidae] in Southwest Nigeria under current and future climatic conditions. JoBAZ 2021,82(1):63. Search in Google Scholar

Araújo MB, Guisan A: Five (or so) challenges for species distribution modelling. J of Biogeo 2006,33(10):1677-1688. Search in Google Scholar

Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MP, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE: Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006,439(7073):161-167. Search in Google Scholar

Woodward A, Smith KR, Campbell-Lendrum D, Chadee DD, Honda Y, Liu Q, Olwoch J, Revich B, Sauerborn R, Chafe Z: Climate change and health: on the latest IPCC report. The Lan 2014,383(9924):1185-9. Search in Google Scholar

Parham PE, Waldock J, Christophides GK, Hemming D, Agusto F, Evans KJ, Fefferman N, Gaff H, Gumel A, LaDeau S: Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society B: Biol Sci 2015,370(1665):20130551. Search in Google Scholar

Mills JN, Gage KL, Khan AS: Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Env health pers 2010,118(11):1507-1514. Search in Google Scholar

Rosenthal J: Climate change and the geographic distribution of infectious diseases. EcoH 2009,6(4):489-495. Search in Google Scholar

Phillips SJ, Elith J: POC plots: calibrating species distribution models with presence-only data. Ecol 2010,91(8):2476-2484. Search in Google Scholar

Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Eco Mod 2006,190(3):231-259. Search in Google Scholar

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ: A statistical explanation of MaxEnt for ecologists. Diver and Distr 2011,17(1):43-57. Search in Google Scholar

Boral D, Moktan S: Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Eco Proc 2021,10:26. Search in Google Scholar

IPCC. Climate Change 2014: synthesis report. Switzerland: IPCC, 2014. Search in Google Scholar

Xiao F, Ling F, Du Y, Feng Q, Yan Y, Chen H: Evaluation of spatial-temporal dynamics in surface water temperature of Qinghai Lake from 2001 to 2010 by using MODIS data. J of Ari Land 2013,5(4):452-464. Search in Google Scholar

Ma Y, Li X-Y, Liu L, Li Z, Hu X, Wu X, Yang X, Wang P, Zhao S-J, Zhang G-H, Liu B-Y: Measurements and Modeling of the Water Budget in Semiarid High-Altitude Qinghai Lake Basin, Northeast Qinghai-Tibet Plateau. J of Geo Res: Atm 2018. Search in Google Scholar

Wang J, Tian J, Li X, Ma Y, Yi W: Evaluation of concordance between environment and economy in Qinghai Lake Watershed, Qinghai-Tibet Plateau. J of Geo Sci 2011, (5):949. Search in Google Scholar

UNESCO. Qinghai Lake: World Heritage tentative lists. 2017(10th April 2019.). Search in Google Scholar

Gong J, Li J, Yang J, Li S, Tang W: Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services. Int J Env Res Pub Health 2017,14(7):818. Search in Google Scholar

Wu Y-N, Ma Y-J, Liu W-L, Zhang W-Z: Modeling the Spatial Distribution of Plateau Pika (Ochotona curzoniae) in the Qinghai Lake Basin, China. Animals (Basel). 2019,9(10):843. Search in Google Scholar

Miller D: The importance of China’s nomads. Rang J 2002,24(1):22. Search in Google Scholar

QSB: Qinghai statistical yearbook. Beijing, China: China Statistics Press, 2010. Search in Google Scholar

Kreutzmann H: The tragedy of responsibility in high Asia: modernizing traditional pastoral practices and preserving modernist worldviews. Pas: Res, Pol and Prac 2013,3(1):7. Search in Google Scholar

Gui-chen C, Min P: Types and Distribution of Vegetation in Qinghai Lake Region. Ch J of Plant Eco 1993,17(1):71-81. Search in Google Scholar

Brown JL. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Meth in Eco and Evo 2014,5(7):694-700. Search in Google Scholar

Fekede RJ, van Gils H, Huang L, Wang X: High probability areas for ASF infection in China along the Russian and Korean borders. Trans Emerg Dis 2019,66(2):852-864. Search in Google Scholar

Arotolu TE, Wang H, Lv J, Shi K, Gils Hv, Huang L, Wang X: Modeling the environmental suitability for Bacillus anthracis in the Qinghai Lake Basin, China. PLoS One 2022,17(10):e0275261. Search in Google Scholar

Pearson R, Raxworthy C, Nakamura M, Peterson A: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J of Biogeo 2007,34:102-117. Search in Google Scholar

Arotolu TE, Afe AE, Wang H, Lv J, Shi K, Huang L, Wang X: Spatial modeling and ecological suitability of monkeypox disease in Southern Nigeria. PLoS One 2022,17(9):e0274325.. Search in Google Scholar

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution interpolated climate surfaces for global land areas. Int J of Clim 2005,25(15):1965-1978. Search in Google Scholar

Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E: Potential species distribution modeling and the use of principal component analysis as predictor variables. Rev Mex de Bio 2014,85(1):189-199. Search in Google Scholar

Mor iguchi S, Onuma M, Goka K: Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan. J of vet med sci 2016,78(7):1107-1115. Search in Google Scholar

Zen g Z, Gao S, Wang H-N, Huang L-Y, Wang X-L: A predictive analysis on the risk of peste des petits ruminants in livestock in the Trans-Himalayan region and validation of its transboundary transmission paths. PLoS One 2021,16(9):e0257094. Search in Google Scholar

Ber nstein IH: Applied multivariate analysis. Garbin CP, Teng GK, editors. New York: Springer-Verlag 1988. Search in Google Scholar

Wad e A. 1: A handbook of statistical analyses using SPSS. Sabine Landau and Brian S. Everitt, Chapman & Hall/CRC, Boca Raton, 2004. ISBN: 1-58488-369-3. Stat in Med 2005,24(20):3236-3237. Search in Google Scholar

Fic k SE, Hijmans RJ: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J of Clim 2017,37(12):4302-4315. Search in Google Scholar

van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, van Ruijven B: RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim Change 2011,109(1):95. Search in Google Scholar

Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M, Rasmussen DJ, Strauss BH, Tebaldi C: Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Eart Fut 2014,2(8):383-406. Search in Google Scholar

Youn g N, L. C, Evangelista P. A: MaxEnt Model v3.3.3e Tutorial (ArcGIS v10)2011 http://ibis.colostate.edu/webcontent/ws/coloradoview/tutorialsdownloads/a_maxent_model_v7.pdf. Accessed 28th October, 2020. Search in Google Scholar

Skow ronek S, Van De Kerchove R, Rombouts B, Aerts R, Ewald M, Warrie J, Schiefer F, Garzon-Lopez C, Hattab T, Honnay O: Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data. Int J of app earth obs and geo 2018,68:61-72. Search in Google Scholar

Li Y, Li M, Li C, Z. L: Optimized maxent model predictions of climate change impacts on the suitable distribution of cunninghamia lanceolata in China. Forests. 2020,11(3):302. Search in Google Scholar

Abdu llayev R, Kracalik I, Ismayilova R, Ustun N, Talibzade A, Blackburn JK: Analyzing the spatial and temporal distribution of human brucellosis in Azerbaijan (1995 - 2009) using spatial and spatio-temporal statistics. BMC Infec Dis. 2012,12(1):185. Search in Google Scholar

Manc ini FR, Bella A, Graziani C, Marianelli C, Mughini-Gras L, Pasquali P, Pompa MG, Rizzo C, Rizzuto E, Busani L: Trends of human brucellosis in Italy, 1998-2010. Epide and infec 2014;142(6):1188-1195. Search in Google Scholar

Yunu sa K, Saidu s, Kudi A, Il I, Jacob R, Buhari H, Baba Y: Geo-Spatial Distribution of Brucella melitensis Infection in Selected Local Government Areas of Katsina and Sokoto States, Nigeria. Nig vet J 2019,95-103. Search in Google Scholar

Al D ahouk S, Neubauer H, Hensel A, Schöneberg I, Nöckler K, Alpers K, Merzenich H, Stark K, Jansen A: Changing epidemiology of human brucellosis, Germany, 1962-2005. Emerg Infec Dis 2007,13(12):1895-1900. Search in Google Scholar

Saeed U, Ali S: Prevalence and Spatial Distribution of Animal Brucellosis in Central Punjab, Pakistan. Int J Environ Res Public Health 2020,17(18). Search in Google Scholar

Chomel BB, DeBess EE, Mangiamele DM, Reilly KF, Farver TB, Sun RK, Barrett LR: Changing trends in the epidemiology of human brucellosis in California from 1973 to 1992: a shift toward foodborne transmission. J of infec dis 1994,170(5):1216-1223. Search in Google Scholar

Ron L, Benitez W, Speybroeck N, Ron J, Saegerman C, Berkvens D, Abatih E: Spatio-temporal clusters of incident human brucellosis cases in Ecuador. Spat Spatiotemp Epidem 2013,5:1-10. Search in Google Scholar

Zhang J, Yin F, Zhang T, Yang C, Zhang X, Feng Z, Li X: Spatial analysis on human brucellosis incidence in mainland China: 2004–2010. BMJ Open 2014,4(4):e004470. Search in Google Scholar

Zhong Z, Yu S, Wang X, Dong S, Xu J, Wang Y, Chen Z, Ren Z, Peng G: Human brucellosis in the People’s Republic of China during 2005-2010. Int J of infec dis: IJID : official publication of the Int Soc for Infec Dis 2013,17(5):e289-92. Search in Google Scholar

Chen Z, Zhang W, Ke Y, Wang Y, Tian B, Wang D, Cui B, Zou W, Li S, Huang L, Song H: High-risk regions of human brucellosis in china: implications for prevention and early diagnosis of travel-related infections. Clin infec dis: an official publication of the Infec Dis Soc of Ame 2013,57(2):330-2. Search in Google Scholar

Li Y-J, Li X-L, Liang S, Fang L-Q, Cao W-C. Epidemiological features and risk factors associated with the spatial and temporal distribution of human brucellosis in China. BMC Infec Dis 2013,13(1):547. Search in Google Scholar

Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, Wang H: Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci of Tot Env 2019,664:203-214. Search in Google Scholar

Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, Wang H: Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci of Tot Env 2019,664:203-214. Search in Google Scholar

Arotolu TE, Wang H, Lv J, Kun S, Huang L, Wang X: Environmental suitability of Yersinia pestis and the spatial dynamics of plague in the Qinghai Lake region, China. Vet med 2022,67(11):569-578. Search in Google Scholar

Assefa A, Tibebu A, Bihon A, Yimana M: Global ecological niche modelling of current and future distribution of peste des petits ruminants virus (PPRv) with an ensemble modelling algorithm. Trans and emerg dis 2020,00(n/a):1-10. Search in Google Scholar

Qian Q, Zhao J, Fang L, Zhou H, Zhang W, Wei L, Yang H, Yin W, Cao W, Li Q: Mapping risk of plague in Qinghai-Tibetan plateau, China. BMC infec dis 2014,14(1):1-8. Search in Google Scholar

Zinsstag J, Roth F, Orkhon D, Chimed-Ochir G, Nansalmaa M, Kolar J, Vounatsou P: A model of animal-human brucellosis transmission in Mongolia. Prev vet med 2005,69(1-2):77-95. Search in Google Scholar

Deqiu S, Donglou X, Jiming Y: Epidemiology and control of brucellosis in China. Vet micro 2002,90(1-4):165-182. Search in Google Scholar

Hou Q, Sun X, Zhang J, Liu Y, Wang Y, Jin Z: Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China. Mat bio 2013,242(1):51-58. Search in Google Scholar

Ayala D, Costantini C, Ose K, Kamdem GC, Antonio-Nkondjio C, Agbor J-P, Awono-Ambene P, Fontenille D, Simard F: Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Mal J 2009,8(1):307. Search in Google Scholar

Moffett A, Shackelford N, Sarkar S: Malaria in Africa: Vector Species’ Niche Models and Relative Risk Maps. PLoS One 2007,2(9):e824. Search in Google Scholar

Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E: Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans of the Roy Soc of Trop Med and Hyg 2005,99(9):647-655. Search in Google Scholar

Md SR, Roma RS, Falk M, Lisa DS, Heinrich N: Brucellosis in human and domestic animals in Bangladesh: A review. Afri J of Mic Res 2014,8(41):3580-3594. Search in Google Scholar

Mischler P, Kearney M, McCarroll J, Scholte R, Vounatsou P, Malone J: Environmental and socio-economic risk modeling for Chagas disease in Bolivia. Geo health 2012,6:S59-66. Search in Google Scholar

Escobar LE, Peterson AT, Favi M, Yung V, Pons DJ, Medina-Vogel G: Ecology and Geography of Transmission of Two Bat-Borne Rabies Lineages in Chile. PLoS negl trop dis 2013,7(12):e2577. Search in Google Scholar

Medley KA: Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob Eco and Bio 2010,19(1):122-133. Search in Google Scholar

Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Group NPSDW: Effects of sample size on the performance of species distribution models. Diver and Dis 2008,14(5):763-73. Search in Google Scholar

Hernandez PA, Graham CH, Master LL, Albert DL: The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecog 2006,29(5):773-85. Search in Google Scholar

van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N: Minimum required number of specimen records to develop accurate species distribution models. Ecog 2016,39(6):542-52. Search in Google Scholar

eISSN:
1820-7448
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Veterinary Medicine