1. bookVolumen 27 (2022): Edición 2 (December 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2255-8691
Primera edición
08 Nov 2012
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Aspect-based Sentiment Analysis and Location Detection for Arabic Language Tweets

Publicado en línea: 24 Jan 2023
Volumen & Edición: Volumen 27 (2022) - Edición 2 (December 2022)
Páginas: 119 - 127
Detalles de la revista
License
Formato
Revista
eISSN
2255-8691
Primera edición
08 Nov 2012
Calendario de la edición
2 veces al año
Idiomas
Inglés

[1] B. Jongman, J. Wagemaker, B.R. Romero, and E.C. De Perez, “Early flood detection for rapid humanitarian response: harnessing near real-time satellite and Twitter signals,” ISPRS International Journal of Geo-Information, vol. 4, no. 4, pp. 2246–2266, Oct. 2015. https://doi.org/10.3390/ijgi4042246 Search in Google Scholar

[2] D. Eilander, P. Trambauer, J. Wagemaker, and A. van Loenen, “Harvesting social media for generation of near real-time flood maps,” Procedia Engineering, vol. 154, pp. 176–183, Aug. 2016. https://doi.org/10.1016/j.proeng.2016.07.441 Search in Google Scholar

[3] J.A. de Bruijn, H. de M oel, B. Jongman, J. Wagemaker, and J.C.J.H. Aerts, “TAGGS: Grouping tweets to improve global geoparsing for disaster response,” Journal of Geovisualization and Spatial Analysis, vol. 2, Dec. 2018, Art no. 2. https://doi.org/10.1007/s41651-017-0010-6 Search in Google Scholar

[4] V. Yadav and S. Bethard, “A survey on recent advances in named entity recognition from deep learning models,” in Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA, Aug. 2018, pp. 2145–2158. https://aclanthology.org/C18-1182/ Search in Google Scholar

[5] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant supervision,” CS224N project report, Stanford 1.12, 2009. Search in Google Scholar

[6] A. Pak and P. Paroubek, “Twitter as a corpus for sentiment analysis and opinion mining,” in LREc, vol. 10, 2010. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://lrecconf.org/proceedings/lrec2010/pdf/385_Paper.pdf Search in Google Scholar

[7] A. Shoukry and A. Rafea, “Sentence-level Arabic sentiment analysis,” in 2012 International Conference on Collaboration Technologies and Systems (CTS), Denver, CO, USA, May 2012, pp. 546–550. https://doi.org/10.1109/CTS.2012.6261103 Search in Google Scholar

[8] M. Elgamal, “Sentiment analysis methodology of Twitter data with an application on Hajj season,” International Journal of Engineering Research & Science (IJOER), vol. 2, no.1, pp. 82–87, Jan. 2016. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ijoer.com/assets/articles_menuscripts/file/IJOER-JAN-2016-22.pdf Search in Google Scholar

[9] Md Shoeb and A. Jawed, “Sentiment analysis and classification of tweets using data mining,” International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 12, Dec. 2017. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.irjet.net/archives/V4/i12/IRJET-V4I12267.pdf Search in Google Scholar

[10] X. Hu, J. Tang, H. Gao, and H. Liu, “Unsupervised sentiment analysis with emotional signals,” in Proceedings of the 22nd international conference on World Wide Web, May 2013, pp. 607–618. https://doi.org/10.1145/2488388.2488442 Search in Google Scholar

[11] P. Bhoir and S. Kolte, “Sentiment analysis of movie reviews using lexicon approach,” in 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, Dec. 2015, pp. 1–6. https://doi.org/10.1109/ICCIC.2015.7435796 Search in Google Scholar

[12] T. Hardeniya and D. A. Borikar, “An approach to sentiment analysis using lexicons with comparative analysis of different techniques,” IOSR Journal of Computer Engineering (IOSR-JCE), vol. 18, no. 3, pp. 53–57, May–Jun. 2016. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.iosrjournals.org/iosr-jce/papers/Vol18-issue3/Version-1/J1803015357.pdf Search in Google Scholar

[13] H. Krishnan, M. Sudheep, and T. Santhanakrishnan, “Sentiment analysis of tweets for inferring popularity of mobile phones,” International Journal of Computer Applications, vol. 157, no. 2, pp. 1–3, Jan. 2017. https://doi.org/10.5120/ijca2017912616 Search in Google Scholar

[14] L. Vu and T. Le, “A lexicon-based method for sentiment analysis using social network data,” in Proceedings of the International Conference on Information and Knowledge Engineering (IKE), Las Vegas, Nevada, USA, Jul. 2017. https://www.researchgate.net/publication/319490430_A_lexicon-based_method_for_Sentiment_Analysis_using_social_network_data Search in Google Scholar

[15] M.-Y. Day and C.-C. Lee, “Deep learning for financial sentiment analysis on finance news providers,” in 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA, USA, Aug. 2016, pp. 1127–1134. https://doi.org/10.1109/ASONAM.2016.7752381 Search in Google Scholar

[16] A. Al Sallab et al., “Deep learning models for sentiment analysis in Arabic,” in Proceedings of the Second Workshop on Arabic Natural Language Processing, Beijing, China, Jul. 2015, pp. 9–17. https://doi.org/10.18653/v1/W15-3202 Search in Google Scholar

[17] A. Severyn and A. Moschitti, “Twitter sentiment analysis with deep convolutional neural networks,” in Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug. 2015, pp. 959–962. https://doi.org/10.1145/2766462.2767830 Search in Google Scholar

[18] Y. Lu, et al. “Are deep learning methods better for twitter sentiment analysis?” in Proceedings of the 23rd Annual Meeting of Natural Language Processing, Japan, 2017. [Online]. Available: http://www.anlp.jp/proceedings/annual_meeting/2017/pdf_dir/C5-1.pdf Search in Google Scholar

[19] A.M. Qamar, S.A. Alsuhibany, and S.S. Ahmed, “Sentiment classification of twitter data belonging to Saudi Arabian telecommunication companies,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 1, pp. 395–401, 2017. https://doi.org/10.14569/IJACSA.2017.080150 Search in Google Scholar

[20] A. Chakravarthy et al. “Hybrid architecture for sentiment analysis using deep learning,” International Journal of Advanced Research in Computer Science, vol. 9, no. 1, 2018. https://doi.org/10.26483/ijarcs.v9i1.5388 Search in Google Scholar

[21] A. Abdelali, K. Darwish, N. Durrani, and H. Mubarak, “Farasa: A fast and furious segmenter for Arabic,” in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, San Diego, California, Jun. 2016, pp. 11–16. https://doi.org/10.18653/v1/N16-3003 Search in Google Scholar

[22] R. Al-Rfou, V. Kulkarni, B. Perozzi, and S. Skiena, “Polyglot-NER: Massive multilingual named entity recognition,” in Proceedings of the 2015 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2015, pp. 586–594. https://doi.org/10.1137/1.9781611974010.66 Search in Google Scholar

[23] A. Zirikly and M. Diab, “Named entity recognition for Arabic social media,” in Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, Denver, Colorado, USA, Jun. 2015, pp. 176–185. https://doi.org/10.3115/v1/W15-1524 Search in Google Scholar

[24] AQAR. [Online]. Available: https://sa.aqar.fm/. Accessed on: March 20, 2020. Search in Google Scholar

[25] A.K. Tarcar, A. Tiwari, V. Dhaimodker, P. Rebelo, R. Desai, and D. Rao, “Healthcare NER models using language model pretraining,” in The First Health Search and Data Mining Workshop (HSDM 2020), WSDM 2020 conference, Houston, USA, Feb. 2020. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo