Acceso abierto

Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities


Cite

K. Habas, C. Nganwuchu, F. Shahzad, R. Gopalan, M. Haque, S. Rahman, A. A. Majumder and T. Nasim, Resolution of coronavirus disease 2019 (COVID-19), Expert Rev. Anti-inf. Ther. 18(12) (2020) 1201–1211; https://doi.org/10.1080/14787210.2020.1797487 Search in Google Scholar

J. Y. Chung, M. N. Thone and Y. J. Kwon, COVID-19 vaccines: The status and perspectives in delivery points of view, Adv. Drug Deliv. Rev. 170 (2021) 1–25; https://doi.org/10.1016/j.addr.2020.12.011 Search in Google Scholar

K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes and R. F. Garry, The proximal origin of SARS-CoV-2, Nat. Med. 26 (2020) 450–452; https://doi.org/10.1038/s41591-020-0820-9 Search in Google Scholar

F. Almazán, I. Sola, S. Zuñiga, S. Marquez-Jurado, L. Morales, M. Becares and L. Enjuanes, Corona-virus reverse genetic systems: infectious clones and replicons, Virus Res. 189 (2014) 262–270; https://doi.org/10.1016/j.virusres.2014.05.026 Search in Google Scholar

M. Ciotti, M. Ciccozzi, A. Terrinoni, W. C. Jiang, C. B. Wang and S. Bernardini, The COVID-19 pandemic, Crit. Rev. Clin. Lab. Sci. 57(6) (2020) 365–388; https://doi.org/10.1080/10408363.2020.1783198 Search in Google Scholar

P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao and Z.-L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579(7798) (2020) 270–275; https://doi.org/10.1038/s41586-020-2012-7 Search in Google Scholar

F. Li, Structure, function, and evolution of coronavirus spike proteins, Annu. Rev. Virol. 3(1) (2016) 237–261; https://doi.org/10.1146/annurev-virology-110615-042301 Search in Google Scholar

D. Schoeman and B. C. Fielding, Coronavirus envelope protein: current knowledge, Virol. J. 16(1) (2019) Article ID 69 (22 pages); https://doi.org/10.1186/s12985-019-1182-0 Search in Google Scholar

WHO, Coronavirus (COVID-19) Dashboard; https://covid19.who.int; last access date November 16, 2022. Search in Google Scholar

Y. A. Malik, Properties of coronavirus and SARS-CoV-2, Malays J. Pathol. 42(1) (2020) 3–11. Search in Google Scholar

A. E. Gorbalenya, S. C. Baker, R. S. Baric, R. J. de Groot, C. Drosten, A. A. Gulyaeva, B. L. Haagmans, C. Lauber, A. M. Leontovich, B. W. Neuman, D. Penzar, S. Perlman, L. L. M. Poon, D. V. Samborskiy, I. A. Sidorov, I. Sola and J. Ziebuhr (Coronaviridae study group of the International committee on taxonomy of viruses), The species Severe Acute Respiratory Syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nature Microbiol. 5(4) (2020) 536–544; https://doi.org/10.1038/s41564-020-0695-z Search in Google Scholar

A. Sundararaman, M. Ray, P. V. Ravindra and P. M. Halami, Role of probiotics to combat viral infections with emphasis on COVID-19, Appl. Microbiol. Biotechnol. 104(19) (2020) 8089–8104; https://doi.org/10.1007/s00253-020-10832-4 Search in Google Scholar

W.-J. Guan, Z.-Y. Ni, Y. Hu, W.-H. Liang, C.-Q. Ou, J.-X. He, L. Liu, H. Shan, C.-L. Lei, D. S. C. Hui, B. Du, L.-J. Li, G. Zeng, K.-Y. Yuen, R.-C. Chen, C.-L. Tang, T. Wang, P.-Y. Chen, J. Xiang, S.-Y. Li, J.-L. Wang, Z.-J. Liang, Y.-X. Peng, L. Wei, Y. Liu, Y.-H. Hu, P. Peng, J.-M. Wang, J.-Y. Liu, Z. Chen, G. Li, Z.-J. Zheng, S.-Q. Qiu, J. Luo, C.-J. Ye, S.-Y. Zhu and N.-S. Zhong (for the China medical treatment expert group for Covid-19), Clinical characteristics of coronavirus disease 2019 in China, New Engl. J. Med. 382(18) (2020) 1708–1720; https://doi.org/10.1056/NEJMoa2002032 Search in Google Scholar

W. Shah, T. Hillman, E. D. Playford and L. Hishmeh, Managing the long term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline, BMJ 372(136) (2021) Article ID 372 (4 pages); https://doi.org/10.1136/bmj.n136 Search in Google Scholar

C. Huang, L. Huang, Y. Wang, X. Li, L. Ren, X. Gu, L. Kang, L. Guo, M. Liu, X. Zhou, J. Luo, Z. Huang, S. Tu, Y. Zhao, L. Chen, D. Xu, Y. Li, C. Li, L. Peng, Y. Li, W. Xie, D. Cui, L. Shang, G. Fan, J. Xu, G. Wang, Y. Wang, J. Zhong, C. Wang, J. Wang, D. Zhang and Bin Cao, 6-month consequences of COVID- 19 in patients discharged from hospital: a cohort study, Lancet 397(10270) (2021) 220–232; https://doi.org/10.1016/S0140-6736(20)32656-8 Search in Google Scholar

M. Zarei, D. Bose, M. Nouri-Vaskeh, V. Tajiknia, R. Zand and M. Ghasemi, Long-term side effects and lingering symptoms post COVID-19 recovery, Rev. Med. Virol. 32(3) (2022) e2289; https://doi.org/10.1002/rmv.2289 Search in Google Scholar

N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, M. A. Müller, C. Drosten and S. Pöhlmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181(2) (2020) 271–280; https://doi.org/10.1016/j.cell.2020.02.052 Search in Google Scholar

X. Ou, Y. Liu, X. Lei, P. Li, D. Mi, L. Ren, L. Guo, R. Guo, T. Chen, J. Hu, Z. Xiang, Z. Mu, X. Chen, J. Chen, K. Hu, Q. Jin, J. Wang and Z. Qian, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nature Commun. 11(1) (2020) Article ID 1620 (12 pages); https://doi.org/10.1038/s41467-020-15562-9 Search in Google Scholar

R. Liu, H. Han, F. Liu, Z. Lv, K. Wu, Y. Liu, Y. Feng and C. Zhu, Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020, Clin. Chim. Acta 505 (2020) 172–175; https://doi.org/10.1016/j.cca.2020.03.009 Search in Google Scholar

P. R. Hsueh, L. M. Huang, P. J. Chen, C. L. Kao and P. C. Yang, Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus, Clin. Microbiol. Infect. 10(12) (2004) 1062–1066; https://doi.org/10.1111/j.1469-0691.2004.01009.x Search in Google Scholar

Z. Li, Y. Yi, X. Luo, N. Xiong, Y. Liu, R. Sun, Y. Wang, B. Hu, W. Chen, Y. Zhang, J. Wang, B. Huang, Y. Lin, J. Yang, W. Cai, X. Wang, J. Cheng, Z. Chen, K. Sun, W. Pan, Z. Zhan, L. Chen, F. Ye, Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis, J. Med. Virol. 92(9) (2020) 1518–1524; https://doi.org/10.1002/jmv.25727 Search in Google Scholar

D. E. Gordon, G. M. Jang, Bouhaddou, J. Xu, K. Obernier, M. J. O’Meara, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Hüttenhain, R. M. Kaake, A. L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B. J. Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J. Bennett, M. Cakir, M. J. McGregor, Q. Li, Z. Z. C. Naing, Y. Zhou, S. Peng, I. T. Kirby, J. E. Melnyk, J. S. Chorba, K. Lou, S. A. Dai, W. Shen, Y. Shi, Z. Zhang, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, C. J. P. Mathy, T. Perica, K. B. Pilla, S. J. Ganesan, D. J. Saltzberg, R. Ramachandran, X. Liu, S. B. Rosenthal, L. Calviello, S. Venkataramanan, Y. Lin, S. A. Wankowicz, M. Bohn, R. Trenker, J. M. Young, D. Cavero, J. Hiatt, T. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, F. Roesch, T. Vallet, B. Meyer, K. M. White, L. Miorin, D. Agard, M. Emerman, D. Ruggero, A. García-Sastre, N. Jura, M. von Zastrow, J. Taunton, O. Schwartz, M. Vignuzzi, C. d’Enfert, S. Mukherjee, M. Jacobson, H. S. Malik, D. G. Fujimori, T. Ideker, C. S. Craik, S. Floor, J. S. Fraser, J. Gross, A. Sali, T. Kortemme, P. Beltrao, K. Shokat, B. K. Shoichet and N. J. Krogan, A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing, preprint, bioRxiv 2020, posted March 27, 2020; https://doi.org/10.1101/2020.03.22.002386 [update: D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O’Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Hüttenhain, R. M. Kaake, A. L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B. J. Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J. Bennett., M. Cakir, M. J. McGregor, Q. Li, B. Meyer, F. Roesch, T. Vallet, A. Mac Kain, L. Miorin, E. Moreno, Z. Z. C. Naing, Y. Zhou, S. Peng, Y. Shi, Z. Zhang, W. Shen, I. T. Kirby, J. E. Melnyk, J. S. Chorba, K. Lou, S. A. Dai, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, J. Lyu, C. J. P. Mathy, T. Perica, K. Bharath Pilla, S. J. Ganesan, D. J. Saltzberg, R. Rakesh, X. Liu, S. B. Rosenthal, L. Calviello, S. Venkataramanan, J. Liboy-Lugo, Y. Lin, X.-P. Huan, Y. F. Liu, S. A. Wankowicz, M. Bohn, M. Safari, F. S. Ugur, C. Koh, N. S. Savar, Q. D. Tran, D. Shengjuler, S. J. Fletcher, M. C. O’Neal, Y. Cai, J. C. J. Chang, D. J. Broadhurst, S. Klippsten, P. P. Sharp, N. A. Wenzell, D. Kuzuoglu-Ozturk, H.-Y. Wang, R. Trenker, J. M. Young, D. A. Cavero, J. Hiatt, T. L. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, R. M. Stroud, A. D. Frankel, O. S. Rosenberg, K. A. Verba, D. A. Agard, M. Ott, M. Emerman, N. Jura, M. von Zastrow, E. Verdin, A. Ashworth, O. Schwartz, C. d’Enfert, S. Mukherjee, M. Jacobson, H. S. Malik, D. G. Fujimori, T. Ideker, C. S. Craik, S. N. Floor, J. S. Fraser, J. D. Gross, A. Sali, B. L. Roth, D. Ruggero, J. Taunton, T. Kortemme, P. Beltrao, M. Vignuzzi, A. García-Sastre, K. M. Shokat, B. K. Shoichet and N. J. Krogan, Nature 583(7816) (2020) 459–468 (+ 17 pages), https://doi.org/10.1038/s41586-020-2286-9] Search in Google Scholar

P. K. Samudrala, P. Kumar, K. Choudhary, N. Thakur, G. S. Wadekar, R. Dayaramani, M. Agrawal and A. Alexander, Virology, pathogenesis, diagnosis and in-line treatment of COVID-19, Eur. J. Pharmacol. 883 (2020) Article ID 173375 (12 pages); https://doi.org/10.1016/j.ejphar.2020.173375 Search in Google Scholar

S. Angeletti, D. Benvenuto, M. Bianchi, M. Giovanetti, S. Pascarella and M. Ciccozzi, COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis, J. Med. Virol. 92(6) (2020) 584–588; https://doi.org/10.1002/jmv.25719 Search in Google Scholar

R. J. G. Hulswit, Y. Lang, M. J. G. Bakkers, W. Li, Z. Li, A. Schouten, B. Ophorst, F. J. M. van Kuppeveld, G.-J. Boons, B.-J. Bosch, E. G. Huizinga and R. J. de Groot, Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A, Proc. Natl. Acad. Sci. USA 116(7) (2019) 2681–2690; https://doi.org/10.1073/pnas.1809667116 Search in Google Scholar

Y. J. Park, A. C. Walls, Z. Wang, M. M. Sauer, W. Li, M. A. Tortorici, B. J. Bosch, F. DiMaio and D. Veesler, Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors, Nat. Struct. Mol. Biol. 26(12) (2019) 1151–1157; https://doi.org/10.1038/s41594-019-0334-7 Search in Google Scholar

J. Cui, F. Li and Z.L. Shi, Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol. 17(3) (2019) 181–192; https://doi.org/10.1038/s41579-018-0118-9 Search in Google Scholar

S. Satarker and M. Nampoothiri, Structural proteins in Severe Acute Respiratory Syndrome Coronavirus-2, Arch. Med. Res. 51(6) (2020) 482–491; https://doi.org/10.1016/j.arcmed.2020.05.012 Search in Google Scholar

E. A. J. Alsaadi and I. M. Jones, Membrane binding proteins of coronaviruses, Future Virol. 14(4) (2019) 275–286; https://doi.org/10.2217/fvl-2018-0144 Search in Google Scholar

B. W. Neuman, B. D. Adair, C. Yoshioka, J. D. Quispe, G. Orca, P. Kuhn, R. A. Milligan, M. Yeager, and M. J. Buchmeier, Supramolecular architecture of severe acute respiratory syndrome corona-virus revealed by electron cryomicroscopy, J. Virol. 80(16) (2006) 7918–7928; https://doi.org/10.1128/JVI.00645-06 Search in Google Scholar

Y. T. Tseng, S. M. Wang, K. J. Huang, A. I. Lee, C. C. Chiang and C. T. Wang, Self-assembly of severe acute respiratory syndrome coronavirus membrane protein, J. Biol. Chem. 285(17) (2010) 12862–12872; https://doi.org/10.1074/jbc.M109.030270 Search in Google Scholar

Q. Huang, L. Yu, A. M. Petros, A. Gunasekera, Z. Liu, N. Xu, P. Hajduk, J. Mack, S.W. Fesik and E. T. Olejniczak, Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein, Biochemistry 43(20) (2004) 6059–6063; https://doi.org/10.1021/bi036155b Search in Google Scholar

P. V’kovski, M. Gerber, J. Kelly, S. Pfaender, N. Ebert, S. Braga Lagache, C. Simillion, J. Portmann, H. Stalder, V. Gaschen, R. Bruggmann, M. H. Stoffel, M. Heller, R. Dijkman and V. Thiel, Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity--labeling, eLife 8 (2019) e42037; https://doi.org/10.7554/eLife.42037 Search in Google Scholar

X. Yan, Q. Hao, Y. Mu, K. A. Timani, L. Ye, Y. Zhu and J. Wu, Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein, Int. J. Biochem. Cell Biol. 38(8) (2006) 1417–1428; https://doi.org/10.1016/j.biocel.2006.02.003 Search in Google Scholar

Y. Zeng, L. Ye, S. Zhu, H. Zheng, P. Zhao, W. Cai, L. Su, Y. She and Z. Wu, The nucleocapsid protein of SARS-associated coronavirus inhibits B23 phosphorylation, Biochem. Biophys. Res. Commun. 369(2) (2008) 287–291; https://doi.org/10.1016/j.bbrc.2008.01.096 Search in Google Scholar

X. Lu, J. Pan, J. Tao and D. Guo, SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism, Virus Genes 42(1) (2011) 37–45; https://doi.org/10.1007/s11262-010-0544-x Search in Google Scholar

Q. Wang, C. Li, Q. Zhang, T. Wang, J. Li, W. Guan, J. Yu, M. Liang and D. Li, Interactions of SARS coronavirus nucleocapsid protein with the host cell proteasome subunit p42, Virol. J. 7 (2010) Article ID 99 (8 pages); https://doi.org/10.1186/1743-422X-7-99 Search in Google Scholar

M. Surjit, B. Liu, V. T. Chow and S. K. Lal, The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells, J. Biol. Chem. 281(16) (2006) 10669–10681; https://doi.org/10.1074/jbc.M509233200 Search in Google Scholar

B. Zhou, J. Liu, Q. Wang, X. Liu, X. Li, P. Li, Q. Ma and C. Cao, The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha, J. Virol. 82(14) (2008) 6962–6971; https://doi.org/10.1128/JVI.00133-08 Search in Google Scholar

T. R. Ruch and C. E. Machamer, The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus, J. Virol. 85(2) (2011) 675–685; https://doi.org/10.1128/JVI.01570-10 Search in Google Scholar

D. X. Liu, Q. Yuan and Y. Liao. Coronavirus envelope protein: a small membrane protein with multiple functions, Cell. Mol. Life Sci. 64(16) (2007) 2043–2048; https://doi.org/10.1007/s00018-007-7103-1 Search in Google Scholar

T. S. Fung and D. X. Liu, Post-translational modifications of coronavirus proteins: roles and function, Future Virol. 13(6) (2018) 405–430; https://doi.org/10.2217/fvl-2018-0008 Search in Google Scholar

M. Prajapat, P. Sarma, N. Shekhar, P. Avti, S. Sinha, H. Kaur, S. Kumar, A. Bhattacharyya, H. Kumar, S. Bansal and B. Medhi, Drug targets for corona virus: A systematic review, Indian J. Pharmacol. 52(1) (2020) 56–65; https://doi.org/10.4103/ijp.IJP_115_20 Search in Google Scholar

C. C. Posthuma, D. D. Nedialkova, J. C. Zevenhoven-Dobbe, J. H. Blokhuis, A. E. Gorbalenya and E. J. Snijder, Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle, J. Virol. 80(4) (2006) 1653–1661; https://doi.org/10.1128/JVI.80.4.1653-1661.2006 Search in Google Scholar

X. Deng, M. Hackbart, R. C. Mettelman, A. O’Brien, A. M. Mielech, G. Yi, C. C. Kao and S. C. Baker, Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages, Proc. Natl. Acad. Sci. USA 114(21) (2017) E4251–E4260; https://doi.org/10.1073/pnas.1618310114 Search in Google Scholar

Y. Kim, R. Jedrzejczak, N. I. Maltseva, M. Wilamowski, M. Endres, A. Godzik, K. Michalska and A Joachimiak, Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2, Protein Sci. 29(7) (2020) 1596–1605; https://doi.org/10.1002/pro.3873 Search in Google Scholar

C. C. Stobart, N. R. Sexton, H. Munjal, X. Lu, K. L. Molland, S. Tomar, A. D. Mesecar and M. R. Denison, Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity, J. Virol. 87(23) (2013) 12611–12618; https://doi.org/10.1128/JVI.02050-13 Search in Google Scholar

H. Wang, S. Xue, H. Yang and C. Chen, Recent progress in the discovery of inhibitors targeting coronavirus proteases, Virol. Sin. 31(1) (2016) 24–30; https://doi.org/10.1007/s12250-015-3711-3 Search in Google Scholar

A. J. te Velthuis, S. H. van den Worm and E. J. Snijder, The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension, Nucleic Acids Res. 40(4) (2012) 1737–1747; https://doi.org/10.1093/nar/gkr893 Search in Google Scholar

M. P. Egloff, F. Ferron, V. Campanacci, S. Longhi, C. Rancurel, H. Dutartre, E. J. Snijder, A. E. Gorbalenya, C. Cambillau and B. Canard, The severe acute respiratory syndrome-coronavirus replica-tive protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world, Proc. Natl. Acad. Sci. USA 101(11) (2004) 3792–3796; https://doi.org/10.1073/pnas.0307877101 Search in Google Scholar

M. Bouvet, A. Lugari, C. C. Posthuma, J. C. Zevenhoven, S. Bernard, S. Betzi, I. Imbert, B. Canard, J.-C. Guillemot, P. Lécine, S. Pfefferle, C. Drosten, E. J. Snijder, E. Decroly and X. Morelli, Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes, J. Biol. Chem. 289(37) (2014) 25783–25796; https://doi.org/10.1074/jbc.M114.577353 Search in Google Scholar

T. Rodrigues, D. Reker, P. Schneider and G. Schneider, Counting on natural products for drug design, Nat. Chem. 8(6) (2016) 531–541; https://doi.org/10.1038/nchem.2479 Search in Google Scholar

R. R. Pamuru, N. Ponneri, A. G. Damu and R. Vadde, Targeting natural products for the treatment of COVID-19 – An updated review, Curr. Pharm. Des. 26(41) (2020) 5278–5285; https://doi.org/10.2174/1381612826666200903122536 Search in Google Scholar

M. Boozari and H. Hosseinzadeh, Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies, Phytother. Res. 35(2) (2021) 864–876; https://doi.org/10.1002/ptr.6873 Search in Google Scholar

D. Silveira, J. M. Prieto-Garcia, F. Boylan, O. Estrada, Y. M. Fonseca-Bazzo, C. M. Jamal, P. O. Magalhães, E. O. Pereira, M. Tomczyk and M. Heinrich, COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy?, Front. Pharmacol. 11 (2020) Article ID 581840 (44 pages); https://doi.org/10.3389/fphar.2020.581840 Search in Google Scholar

L. Ang, H. W. Lee, A. Kim and M. S. Lee, Herbal medicine for the management of COVID-19 during the medical observation period: A review of guidelines, Integr. Med. Res. 9(3) (2020) Article ID 100465 (5 pages); https://doi.org/10.1016/j.imr.2020.100465 Search in Google Scholar

A. Y. Fan, S. Gu and S. F. Alemi (Research group for evidence-based Chinese medicine), Chinese herbal medicine for COVID-19: Current evidence with systematic review and meta-analysis, J. Integr. Med. 18(5) (2020) 385–394; https://doi.org/10.1016/j.joim.2020.07.008 Search in Google Scholar

A. D. Fuzimoto and C. Isidoro, The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic?, Trad. Complement. Med. 10(4) (2020) 405–419; https://doi.org/10.1016/j.jtcme.2020.05.003 Search in Google Scholar

D. H. Zhang, K. L. Wu, X. Zhang, S. Q. Deng and B. Peng, In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med. 18(2) (2020) 152–158; https://doi.org/10.1016/j.joim.2020.02.005 Search in Google Scholar

S. Kumar, P. Kashyap, S. Chowdhury, S. Kumar, A. Panwar and A. Kumar, Identification of phyto-chemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARSCoV-2) that are capable of inhibiting virus replication, Phytomedicine 85 (2021) Article ID 153317 (10 pages); https://doi.org/10.1016/j.phymed.2020.153317 Search in Google Scholar

A. Khan, M. Khan, S. Saleem, Z. Babar, A. Ali, A. A. Khan, Z. Sardar, F. Hamayun, S. S. Ali and D.-Q. Wei, Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARs-CoV-2 with natural products, Interdiscip. Sci. 12(3) (2020) 335–348; https://doi.org/10.1007/s12539-020-00381-9 Search in Google Scholar

M. T. Islam, C. Sarkar, D. M. El-Kersh, S. Jamaddar, S. J. Uddin, J. A. Shilpi and M. S. Mubarak, Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data, Phytother. Res. 34(10) (2020) 2471–2492; https://doi.org/10.1002/ptr.6700 Search in Google Scholar

A. Shah, V. Patel and B. Parmar, Discovery of some antiviral natural products to fight against novel coronavirus (SARS-CoV-2) using an in silico approach, Comb. Chem. High Throughput Screen. 24(8) (2021) 1271–1280; https://doi.org/10.2174/1386207323666200902135928 Search in Google Scholar

M. Kandeel and M. Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci. 251 (2020) Article ID 117627 (5 pages); https://doi.org/10.1016/j.lfs.2020.117627 Search in Google Scholar

S. Vardhan and S. K. Sahoo, In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19, Comput. Biol. Med. 124 (2020) Article ID 103936 (12 pages); https://doi.org/10.1016/j.compbiomed.2020.103936 Search in Google Scholar

R. Yu, L. Chen, R. Lan, R. Shen and P. Li, Computational screening of antagonists against the SARSCoV-2 (COVID-19) coronavirus by molecular docking, Int. J. Antimicrob. Agents 56(2) (2020) Article ID 106012 (6 pages); https://doi.org/10.1016/j.ijantimicag.2020.106012 Search in Google Scholar

T. Joshi, T. Joshi, P. Sharma, S. Mathpal, H. Pundir, V. Bhatt and S. Chandra, In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking, Eur. Rev. Med. Pharmacol. Sci. 24(8) (2020) 4529–4536; https://doi.org/10.26355/eurrev_202004_21036 Search in Google Scholar

H. M. Wahedi, S. Ahmad and S. W. Abbasi, Stilbene-based natural compounds as promising drug candidates against COVID-19, J. Biomol. Struct. Dyn. 39(9) (2021) 3225–3234; https://doi.org/10.1080/07391102.2020.1762743 Search in Google Scholar

S. Kumar, K. Thakur, B. Sharma, T. R. Bhardwaj, D. N. Prasad and R. K. Singh, Recent advances in vaccine development for the treatment of emerging infectious diseases, Indian J. Pharm. Ed. Res. 53(3) (2019) 343–354. Search in Google Scholar

D. V. Mehrotra, H. E. Janes, T. R. Fleming, P. W. Annunziato, K. M. Neuzil, L. N. Carpp, D. Benkeser, E. R. Brown, M. Carone, I. Cho, D. Donnell, M. P. Fay, Y. Fong, S. Han, I. Hirsch, Y. Huang, Y. Huang, O. Hyrien, M. Juraska, A. Luedtke, M. Nason, A. Vandebosch, H. Zhou, M. S. Cohen, L. Corey, J. Hartzel, D. Follmann and P. B. Gilbert, Clinical endpoints for evaluating efficacy in COVID-19 vaccine trials, Ann. Intern. Med. 174(2) (2021) 221–228; https://doi.org/10.7326/M20-6169 Search in Google Scholar

A. J. Marian, Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries, Cardiovasc. Pathol. 50 (2021) Article ID 107278 (11 pages); https://doi.org/10.1016/j.carpath.2020.107278 Search in Google Scholar

University of Oxford, Vaccine knowledge project, Authoritative information for all, COVID-19 vaccines, https://vk.ovg.ox.ac.uk/vk/covid-19-vaccines; last access date November 5, 2022 Search in Google Scholar

WHO, The Moderna COVID-19 (mRNA-1273) Vaccine: What you Need to Know; https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you-need-to-know; last access date November 17, 2022 Search in Google Scholar

L. A. Jackson, E. J. Anderson, N. G. Rouphael, P. C. Roberts, M. Makhene, R. N. Coler, M. P. Mc-Cullough, J. D. Chappell, M. R. Denison, L. J. Stevens, A. J. Pruijssers, A. McDermott, B. Flach, N. A. Doria-Rose, K. S. Corbett, K. M. Morabito, S. O’Dell, S. D. Schmidt, P. A. Swanson, II, M. Padilla, J. R. Mascola, K. M. Neuzil, H. Bennett, W. Sun, E. Peters, M. Makowski, J. Albert, K. Cross, W. Buchanan, R. Pikaart-Tautges, J. E. Ledgerwood, B. S. Graham and J. H. Beigel (for the mRNA-1273 study group), An mRNA Vaccine against SARS-CoV-2 - Preliminary report, N. Engl. J. Med. 383(20) (2020) 1920–1931; https://doi.org/10.1056/NEJMoa2022483 Search in Google Scholar

S. Roest, R. A. S Hoek and O. C. Manintveld, BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting, N. Engl. J. Med. 384(20) (2021) 1968–1970; https://doi.org/10.1056/NEJMc2104281 Search in Google Scholar

E. Callaway, Russia announces positive COVID-vaccine results from controversial trial, Nature -News 11 Nov 2020; https://doi.org/10.1038/d41586-020-03209-0 Search in Google Scholar

K. Rajarshi, R. Khan, M. K. Singh, T. Ranjan, S. Ray and S. Ray, Essential functional molecules associated with SARS-CoV-2 infection: Potential therapeutic targets for COVID-19, Gene 768 (2021) Article ID 145313 (9 pages); https://doi.org/10.1016/j.gene.2020.145313 Search in Google Scholar

L. Dong, S. Hu and J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov. Ther. 14(1) (2020) 58–60; https://doi.org/10.5582/ddt.2020.01012 Search in Google Scholar

R. K. Guy, R. S. Di Paola, F. Romanelli and R. E. Dutch, Rapid repurposing of drugs for COVID-19, Science 368(6493) (2020) 829–830; https://doi.org/10.1126/science.abb9332 Search in Google Scholar

D. Calina, A. O. Docea, D. Petrakis, A. M. Egorov, A. A. Ishmukhametov, A. G. Gabibov, M. I. Shtilman, R. Kostoff, F. Carvalho, M. Vinceti, D. A. Spandidos and A. Tsatsakis, Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review), Int. J. Mol. Med. 46(1) (2020) 3–16; https://doi.org/10.3892/ijmm.2020.4596 Search in Google Scholar

Y.-F. Tu, C.-S. Chien, A. A. Yarmishyn, Y.-Y. Lin, Y.-H. Luo, Y.-T. Lin, W.-Y. Lai, D.-M. Yang, S.-J. Chou, Y.-P. Yang, M.-L. Wang and S.-H. Chiou, A review of SARS-CoV-2 and the ongoing clinical trials, Int. J. Mol. Sci. 21(7) (2020) Article ID 2657 (19 pages); https://doi.org/10.3390/ijms21072657 Search in Google Scholar

S. Mulangu, L. E. Dodd, R. T. Davey, Jr., O. T. Mbaya, M. Proschan, D. Mukadi, M. L. Manzo, D. Nzolo, A. T. Oloma, A. Ibanda, R. Ali, S. Coulibaly, A. C. Levine, R. Grais, J. Diaz, H. C. Lane, J.-J. Muyembe-Tamfum (and the PALM writing group for the PALM consortium study team), A randomized, controlled trial of Ebola virus disease therapeutics, N. Engl. J. Med. 381(24) (2019) 2293–2303; https://doi.org/10.1056/NEJMoa1910993 Search in Google Scholar

U. S. Food and Drug Administration, FDA Approves First Treatment for COVID-19, October 22, 2020; https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19; last access date November 17, 2022. Search in Google Scholar

P. K. Samudrala, P. Kumar, K. Choudhary N. Thakur, G. S. Wadekar, R. Dayaramani, M. Agrawal and A. Alexander, Virology, pathogenesis, diagnosis and in-line treatment of COVID-19, Eur. J. Pharmacol. 883 (2020) Article ID 173375 (12 pages); https://doi.org/10.1016/j.ejphar.2020.173375 Search in Google Scholar

S. Kumar, A. Sil and A. Das, Hydroxychloroquine for COVID-19: Myths vs facts, Dermatol. Ther. 33(6) (2020) e13857; https://doi.org/10.1111/dth.13857 Search in Google Scholar

H. Pertinez, R. K. R. Rajoli, S. H. Khoo and A. Owen, Pharmacokinetic modelling to estimate intracellular favipiravir ribofuranosyl-5’-triphosphate exposure to support posology for SARS-CoV-2, J. Antimicrob. Chemother. 76(8) (2021) 2121–2128; https://doi.org/10.1093/jac/dkab135 Search in Google Scholar

M.-Y. Liu, S. Wang, W.-F. Yao, H.-z. Wu, S.-N. Meng and M.-J. Wei, Pharmacokinetic properties and bioequivalence of two formulations of arbidol: an open-label, single-dose, randomized-sequence, two-period crossover study in healthy Chinese male volunteers, Clin. Ther. 31(4) (2009) 784–792; https://doi.org/10.1016/j.clinthera.2009.04.016 Search in Google Scholar

F. M. Shirazi, R. Mirzaei, S. Nakhaee, A. Nejatian, S. Ghafari and O. Mehrpour, Repurposing the drug, ivermectin, in COVID-19: toxicological points of view, Eur. J. Med. Res. 27(1) (2022) Article ID 21 (11 pages); https://doi.org/10.1186/s40001-022-00645-8 Search in Google Scholar

eISSN:
1846-9558
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Pharmacy, other