Acceso abierto

Effects of 3R, 16S-2-hydroxyethyl apovincaminate (HEAPO), donepezil and galantamine on learning and memory retention in naïve Wistar rats


Cite

1. S. Z. Szatmári and P. J. Whitehouse, Vinpocetine for cognitive impairment and dementia, Cochrane Database Syst. Rev. 1 (2003) CD003119; https://doi.org/10.1002/14651858.CD003119840698112535455 Search in Google Scholar

2. M. Wang, L. Wang, J. Sun, L. Zhang, L. Zhao and X. Xiong, Simultaneous determination of vinpocetine and its major active metabolite apovincaminic acid in rats by UPLC-MS/MS and its appli cation to the brain tissue distribution, J. Chromatogr. Sci. 56(3) (2018) 225–232; https://doi.org/10.1093/chromsci/bmx10429206914 Search in Google Scholar

3. P. Bönöczk, B. Gulyás, V. Adam-Vizi, A. Nemes, E. Kárpáti, B. Kiss, M. Kapás, C. Szántay, I. Koncz, T. Zelles and A. Vas, Role of sodium channel inhibition in neuroprotection: effect of vinpocetine, Brain Res. Bull. 53(3) (2000) 245–254; https://doi.org/10.1016/S0361-9230(00)00354-311113577 Search in Google Scholar

4. I. T. Lott, K. Osann, E. Doran and L. Nelson, Down syndrome and Alzheimer disease – Response to donepezil, Arch. Neurol. 59(7) (2002) 1133–1136; https://doi.org/10.1001/archneur.59.7.113312117361 Search in Google Scholar

5. G. Fabbrini, P. Barbanti, C. Aurilia, C. Pauletti, G. L. Lenzi and G. Meco, Donepezil in the treatment of hallucinations and delusions in Parkinson’s disease, Neurol. Sci. 23(1) (2002) 41–43; https://doi.org/10.1007/s10072020002212111620 Search in Google Scholar

6. H. Ogura, T. Kosasa, Y. Kuriya and Y. Yamanishi, Donepezil, a centrally acting acethylcholinesterase inhibitor, alleviates learning deficits in hypocholinergic models in rats, Methods Find. Exp. Clin. Pharmacol. 22(2) (2000) 89–95; https://doi.org/10.1358/mf.2000.22.2.79607010849891 Search in Google Scholar

7. D. R. Liston, J. A. Nielsen, A. Villalobos, D. Chapin, S. B. Jones, S. T. Hubbard, I. A. Shalaby, A. Ramirez, D. Nason and W. F. White, Pharmacology of selective acethylcholinesterase inhibitors: implications for use in Alzheimer’s disease, Eur. J. Pharmacol. 486(1) (2004) 9–17; https://doi.org/10.1016/j.ejphar.2003.11.08014751402 Search in Google Scholar

8. A. Khateb, J. Amman, J. M. Annoni and K. Diserens, Cognition-enhancing effects of donepezil in traumatic brain injury, Eur. Neurol. 54(1) (2005) 39–45; https://doi.org/10.1159/00008771816118495 Search in Google Scholar

9. M. Fujiki, H. Kobayashi, S. Uchida, R. Inoue and K. Ishii, Neuroprotective effect of donepezil, a nicotinic acethylcholine-receptor activator, on cerebral infarction in rats, Brain Res. 1043(1-2) (2005) 236–241; https://doi.org/10.1016/j.brainres.2005.02.06315862539 Search in Google Scholar

10. S. Kotani, T. Yamauchi, T. Teramoto and H. Ogura, Donepezil, an acethylcholinesterase inhibitor, enhances adult hippocampal neurogenesis, Chem. Biol. Interact 175(1-3) (2008) 227–230; https://doi.org/10.1016/j.cbi.2008.04.00418501884 Search in Google Scholar

11. K. J. Kwon, M. K. Kim, E. J. Lee, J. N. Kim, B. R. Choi, S. Y. Kim, K. S. Cho, J. S. Han, H. Y. Kim, C. Y. Shin and S. H. Han, Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia, J. Neurol. Sci. 347(1-2) (2014) 66–77; https://doi.org/10.1016/j.jns.2014.09.02125266713 Search in Google Scholar

12. M. Pohanka, Inhibitors of acethylcholinesterase and butyrylcholinesterase meet immunity, Int. J. Mol. Sci. 15(6) (2014) 9809–9825; https://doi.org/10.3390/ijms15069809410012324893223 Search in Google Scholar

13. C. Scali, F. Casamenti, A. Bellucci, C. Costagli, B. Schmidt and G. Pepeu, Effect of subchronic administration of metrifonate, rivastigmine and donepezil on brain acetylcholine in aged F344 rats, J. Neural Transm. 109 (2002) 1067–1080; https://doi.org/10.1007/s00702020009012111444 Search in Google Scholar

14. G. A. Higgins, M. Enderlin, R. Fimbel, M. Haman, A. J. Grottick, M. Soriano, J. G. Richards, J. A. Kemp and R. Gill, Donepezil reverse a mnemonic deficit produced by scopolamine but not by perforant path lesion or transient cerebral ischemia, Eur. J. Neurosci. 15(11) (2002) 1827–1840; https://doi.org/10.1046/j.1460-9568.2002.02018.x12081663 Search in Google Scholar

15. W. J. Krall, J. J. Sramek and N. R. Cutler, Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease, Ann. Pharmacother. 33(4) (1999) 441–450; https://doi.org/10.1345/aph.1821110332536 Search in Google Scholar

16. A. Nordberg and A.-L. Svenson, Cholinesterase inhibitors in the treatment of Alzheimer’s disease - A comparison of tolerability and pharmacology, Drug Safety 19 (1998) 465–480; https://doi.org/10.2165/00002018-199819060-000049880090 Search in Google Scholar

17. C. Yuede, H. Dong and J. G. Csernansky, Anti-dementia drugs and hippocampal-dependent memory in rodents, Behav. Pharmacol. 18(5-6) (2007) 347–363; https://doi.org/10.1097/FBP.0b013e3282da278d266693417762506 Search in Google Scholar

18. M. J. H. J. Dekker, J. C. Bouvy, D. O’Rourke, R. Thompson, A. Makady, P. Jonsson and C. C. Gispende Wied, Alignment of European regulatory and health technology assessments: A review of licensed products for Alzheimer’s disease, Front. Med. (Lausanne) 6 (2019) Article ID 73 (9 pages); https://doi:10.3389/fmed.2019.0007310.3389/fmed.2019.00073651592731134200 Search in Google Scholar

19. V. J. DeNoble, S. J. Repetti, L. W. Gelpke, M. Wood and K. L. Keim, Vinpocetine: nootropic effects on scopolamine-induced and hypoxa-induced retrieval deficits of a step-through passive avoidance response in rats, Pharmacol. Biochem. Behav. 24(4) (1986) 1123–1128; https://doi.org/10.1016/0091-3057(86)90465-X3714768 Search in Google Scholar

20. A. Nemes, L. Czibula, C. Szántay, A. Gere, B. Kiss, J. Laszy, I. Gyertyán, Z. Szombathelyi and C. Szántay, Synthesis and evaluation of 2’-hydroxyethyl trans-apovincaminate derivatives as anti-oxidant and cognitive enhancer agents, J. Med. Chem. 51(3) (2008) 479–486; https://doi.org/10.1021/jm070618k18183943 Search in Google Scholar

21. J. Prickaerts, A. Sick, F. J. van der Staay, J. de Vente and A. Blokland, Dissociable effects of acethylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation, Psychopharmacology 177 (2005) 381–390; https://doi.org/10.1007/s00213-004-1967-715630588 Search in Google Scholar

22. F. Jia, M. Kato, H. Dai, A. Xu, T. Okuda, E. Sakurai, N. Okamura, T. W. Lovenberg, A. Barbier, N. I. Carruthers, K. Linuma and K. Yanai, Effects of histamine H3 antagonists and donepezil on learning and mnemonic deficits induced by pentylentetrazol kindling in weanling mice, Neuro-pharmacology 50(4) (2006) 404–411; https://doi.org/10.1016/j.neuropharm.2005.09.01716310812 Search in Google Scholar

23. V. J. DeNoble, Vinpocetine enhances retrieval of a step-through passive avoidance response in rats, Pharmacol. Biochem. Behav. 26(1) (1987) 183–186; https://doi.org/10.1016/0091-3057(87)90552-13562490 Search in Google Scholar

24. D. Dimitrova and D. Getova-Spassova, Effects of galantamine and donepezil on active and passive avoidance tests in rats with induced hypoxia, Pharmacol. Sci. 101 (2006) 199–204; https://doi.org/10.1254/jphs.fpe05006x16861821 Search in Google Scholar

25. D. P. Getova and D. D. Dimitrova, Effects of GABAB receptor antagonists CGP63360, CGP76290A and CGP76291A on learning and memory processes in rats, Centr. Eur. J. Med. 2(3) (2007) 280–293; https://doi.org/10.2478/s11536-007-0033-3 Search in Google Scholar

26. L. V. Vasileva, D. P. Getova, N. D. Doncheva, A. S. Marchev and M. I. Georgiev, Beneficial effect of commercial Rhodiola extract in rats with scopolamine-induced memory impairment on active avoidance, J. Ethnopharmacol. 193 (2016) 586–591; https://doi.org/10.1016/j.jep.2016.10.01127720849 Search in Google Scholar

27. J. A. Quillfeldt, Behavioral Methods to Study Learning and Memory in Rats, in Rodent Model as Tools in Ethical Biomedical Research (Eds. M. L. Andersen and S. Tufik), Springer Cham, Heidelberg 2016, pp. 101–136.10.1007/978-3-319-11578-8_17 Search in Google Scholar

28. W. Froestl, A. Muhs and A. Pfeifer, Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors, J. Alzheimers Dis. 32(4) (2012) 793–887; https://doi.org/10.3233/JAD-2012-12118622886028 Search in Google Scholar

29. N. A. Suliman, C. N. Mat Taib, M. A. Mohd Moklas, M. I. Adenan, M. T. Hidayat Baharuldin, R. Basir, Establishing natural nootropics: Recent molecular enhancement influenced by natural noo-tropic, Evid. Based Complement. Alternat. Med. 2016 (2016) Article ID 4391375 (12 pages); https://doi.org/10.1155/2016/4391375502147927656235 Search in Google Scholar

30. J. Jakubík, L. Bačáková, E. E. El-Fakahany and S. Tuček, Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors, Mol. Pharmacol. 52(1) (1997) 172–179; https://doi.org/https://doi.org/10.1124/mol.52.1.17210.1124/mol.52.1.1729224827 Search in Google Scholar

31. S. Deiana, B. Platt and G. Riedel, The cholinergic system and spatial learning, Behav. Brain Res. 221(2) (2011) 389–411; https://doi.org/10.1016/j.bbr.2010.11.03621108971 Search in Google Scholar

32. J. Jia, C. Wei, W. Chen, L. Jia, A. Zhow, F. Wang, Y. Tang and L. Xu, Safety and efficacy of donepezil 10 mg/day in patients with mild to moderate Alzheimer’s disease, J. Alzheimers Dis. 74(1) (2020) 199–211; https://doi.org/10.3233/JAD-19094031985467 Search in Google Scholar

33. S. A. Jacobson and M. N. Sabbagh, Donepezil: potential neuroprotective and disease-modifying effects, Expert Opin. Drug Metab. Toxicol. 4(10) (2008) 1363–1369; https://doi.org/10.1517/17425255.4.10.136318798705 Search in Google Scholar

34. H. G. Kim, M. Moon, J. G. Choi, G. Park, A.-J. Kim, J. Hur, K.-T. Lee and M. S. Oh, Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo, Neurotoxicology 40 (2014) 23–32; https://doi.org/10.1016/j.neuro.2013.10.00424189446 Search in Google Scholar

35. S. J. Colloby, P. J. Nathan, I. G. McKeith, G. Bakker, J. T. O’Brien, J.-P. Taylor, Cholinergic muscarinic M1/M4 receptor networks in dementia with Lewy bodies, Brain Commun. 2(2) (2020) Article ID fcaa098 (12 pages); https://doi.org/10.1093/braincomms/fcaa098747569432954342 Search in Google Scholar

36. S. A. Wazea, W. Wadie, A. K. Bahgat, H. S. El-Abhar, Galantamine anti-colitic effect: Role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways. Sci. Rep. 8 (2018) Article ID 5110 (10 pages); https://doi.org/10.1038/s41598-018-23359-6586517829572553 Search in Google Scholar

eISSN:
1846-9558
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Pharmacy, other