Cite

1. K. Korzeniewski, E. Bylicka-Szczepanowska and A. Lass, Prevalence of asymptomatic malaria infections in seemingly healthy children, the rural dzanga sangha region, Central African Republic, Int. J. Environ. Res. Public Health 18(2) (2021) Article ID 814 (14 pages); https://doi.org/10.3390/ijerph18020814783337433477889 Search in Google Scholar

2. M. Rahi and A. Sharma, Malaria control initiatives that have the potential to be gamechangers in India’s quest for malaria elimination, Lancet Reg. HealthSoutheast Asia 2 (2022) Article ID 100009 (12 pages); https://doi.org/10.1016/j.lansea.2022.04.005 Search in Google Scholar

3. World Health Organization (WHO), World Malaria Report, 2021; https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021; last access date July 28, 2022 Search in Google Scholar

4. L. Kurtovic, L. Reiling, D. H. Opi and J. G. Beeson, Recent clinical trials inform the future for malaria vaccines, Commun. Med. 1 (2021) Article ID 26 (5 pages); https://doi.org/10.1038/s43856-021-00030-2905326335602185 Search in Google Scholar

5. M. S. Datoo, M. H. Natama, A. Somé, O. Traoré, T. Rouamba, D. Bellamy, P. Yameogo, D. Valia, M. Tegneri, F. Ouedraogo, R. Soma, S. Sawadogo, F. Sorgho, K. Derra, E. Rouamba, B. Orindi, F. Ramos Lopez, A. Flaxman, F. Cappuccini, R. Kailath, S. Elias, E. Mukhopadhyay, A. Noe, M. Cairns, A. Lawrie, R. Roberts, I. Valéa, H. Sorgho, N. Williams, G. Glenn, L. Fries, J. Reimer, K. J. Ewer, U. Shaligram, A. V. S. Hill and H. Tinto, Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial, Lancet 397 (2021) 1809–1818; https://doi.org/10.1016/S0140-6736(21)00943-0812176033964223 Search in Google Scholar

6. Griffith University, Researchers Develop Broad-Spectrum Malaria Vaccine, Griffith News, 2021; https://news.griffith.edu.au/2021/10/21/researchers-develop-broad-spectrum-malaria-vaccine; last access date September 12, 2022 Search in Google Scholar

7. E. Hughes, E. Wallender, A. M. Ali, P. Jagannathan and R. M. Savic, Malaria PK/PD and the role pharmacometrics can play in the global health arena: Malaria treatment regimens for vulnerable populations, Clin. Pharmacol. Ther. 110(4) (2021) 926–940; https://doi.org/10.1002/cpt.2238851842533763871 Search in Google Scholar

8. A. L. Conroy, D. Datta and C. C. John, What causes severe malaria and its complications in children? Lessons learned over the past 15 years, BMC Med. 17 (2019) Article ID 52 (4 pages); https://doi.org/10.1186/s12916-019-1291-z640429330841892 Search in Google Scholar

9. P. Patel, P. K. Bharti, D. Bansal, N. A. Ali, R. K. Raman, P. K. Mohapatra, R. Sehgal, J. Mahanta, A. A. Sultan and N. Singh, Prevalence of mutations linked to antimalarial resistance in Plasmodium falciparum from Chhattisgarh, Central India: A malaria elimination point of view, Sci. Rep. 7 (2017) Article ID 16690 (8 pages); https://doi.org/10.1038/s41598-017-16866-5570936229192183 Search in Google Scholar

10. D. Menard and A. Dondorp, Antimalarial drug resistance: A threat to malaria elimination, Cold Spring Harb. Perspect. Med. 7 (2017) Article ID a025619 (24 pages); https://doi.org/10.1101/cshperspect.a025619549505328289248 Search in Google Scholar

11. M. Mishra, V. K. Mishra, V. Kashaw, A. K. Iyer and S. K. Kashaw, Comprehensive review on various strategies for antimalarial drug discovery, Eur. J. Med. Chem. 125 (2017) 1300–1320; https://doi.org/10.1016/j.ejmech.2016.11.02527886547 Search in Google Scholar

12. N. K. Sahu, S. Sahu and D. V. Kohli, Novel molecular targets for antimalarial drug development, Chem. Biol. Drug Des. 71(4) (2008) 287–297; https://doi.org/10.1111/j.1747-0285.2008.00640.x18298458 Search in Google Scholar

13. E. G. Tse, M. Korsik and M. H. Todd, The past, present and future of anti-malarial medicines, Malar. J. 18 (2019) Article ID 93 (21 pages); https://doi.org/10.1186/s12936-019-2724-z643106230902052 Search in Google Scholar

14. T. T. Diagana, Supporting malaria elimination with 21st century antimalarial agent drug discovery, Drug Discov. Today 20(10) (2015) 1265–1270; https://doi.org/10.1016/j.drudis.2015.06.00926103616 Search in Google Scholar

15. Z. Mhlwatika and B. A. Aderibigbe, Polymeric nanocarriers for the delivery of antimalarials, Molecules 23(10) (2018) Article ID 2527 (15 pages); https://doi.org/10.3390/molecules23102527622230330279405 Search in Google Scholar

16. P. J. Rosenthal, Antimalarial drug discovery: old and new approaches, J. Exp. Biol. 206(21) (2003) 3735–3744; https://doi.org/10.1242/jeb.0058914506208 Search in Google Scholar

17. W. A. Cortopassi, T. C. Costa Franca and A. U. Krettli, A systems biology approach to antimalarial drug discovery, Expert Opin. Drug Discov. 13(7) (2018) 617–626; https://doi.org/10.1080/17460441.2018.147105629737894 Search in Google Scholar

18. E. S. Mathews and A. R. Odom John, Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination, F1000Res. 7 (2018) Article ID 1170 (11 pages); https://doi.org/10.12688/f1000research.14874.1607309030135714 Search in Google Scholar

19. J. N. Burrows, S. Duparc, W. E. Gutteridge, R. Hooft van Huijsduijnen, W. Kaszubska, F. Macintyre, S. Mazzuri, J. J. Möhrle and T. N. C. Wells, New developments in anti-malarial target candidate and product profiles, Malar. J. 16 (2017) Article ID 26 (29 pages); https://doi.org/10.1186/s12936-016-1675-x523720028086874 Search in Google Scholar

20. M. Duffey, B. Blasco, J. N. Burrows, T. N. C. Wells, D. A. Fidock and D. Leroy, Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials, Trends Parasitol. 37(8) (2021) 709–721; https://doi.org/10.1016/j.pt.2021.04.006828264434001441 Search in Google Scholar

21. J. Oyelade, I. Isewon, O. Aromolaran, E. Uwoghiren, T. Dokunmu, S. Rotimi, O. Aworunse, O. Obembe and E. Adebiyi, Computational identification of metabolic pathways of Plasmodium falciparum using the k-shortest path algorithm, Int. J. Genom. 2019 (2019) Article ID 1750291 (13 pages); https://doi.org/10.1155/2019/1750291679120731662957 Search in Google Scholar

22. D. A. Fidock, P. J. Rosenthal, S. L. Croft, R. Brun and S. Nwaka, Antimalarial drug discovery: efficacy models for compound screening, Nat. Rev. Drug Discov. 3(6) (2004) 509–520; https://doi.org/10.1038/nrd141615173840 Search in Google Scholar

23. E. Comer, J. A. Beaudoin, N. Kato, M. E. Fitzgerald, R. W. Heidebrecht, M. duPont Lee, IV, D. Masi, M. Mercier, C. Mulrooney, G. Muncipinto, A. Rowley, K. Crespo-Llado, A. E. Serrano, A. K. Lukens, R. C. Wiegand, D. F. Wirth, M. A. Palmer, M. A. Foley, B. Munoz, C. A. Scherer, J. R. Duvall and S. L. Schreiber, Diversity-oriented synthesis-facilitated medicinal chemistry: Toward the development of novel antimalarial agents, J. Med. Chem. 57(20) (2014) 8496–8502; https://doi.org/10.1021/jm500994n420755325211597 Search in Google Scholar

24. P. Aide, B. Candrinho, B. Galatas, K. Munguambe, C. Guinovart, F. Luis, A. Mayor, K. Paaijmans, L. Fernández-Montoya, L. Cirera, Q. Bassat, S. Mocumbi, C. Menéndez, D. Nhalungo, A. Nhacolo, R. Rabinovich, E. Macete, P. Alonso and F. Saúte, Setting the scene and generating evidence for malaria elimination in Southern Mozambique, Malaria J. 18(1) (2019) Article ID 190 (11 pages); https://doi.org/10.1186/s12936-019-2832-9655489231170984 Search in Google Scholar

25. E. Deu, Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation, FEBS J. 284(16) (2017) 2604–2628; https://doi.org/10.1111/febs.14130557553428599096 Search in Google Scholar

26. N. Kandepedu, D. Gonzàlez Cabrera, S. Eedubilli, D. Taylor, C. Brunschwig, L. Gibhard, M. Njoroge, N. Lawrence, T. Paquet, C. J. Eyermann, T. Spangenberg, G. S. Basarab, L. J. Street and K. Chibale, Identification, characterization, and optimization of 2,8-disubstituted-1,5-naphthyridines as novel Plasmodium falciparum phosphatidylinositol-4-kinase inhibitors with in vivo efficacy in a humanized mouse model of malaria, J. Med. Chem. 61(13) (2018) 5692–5703; https://doi.org/10.1021/acs.jmedchem.8b0064829889526 Search in Google Scholar

27. C. W. McNamara, M. C. S. Lee, C. S. Lim, S. H. Lim, J. Roland, A. Nagle, O. Simon, B. K. S. Yeung, A. K. Chatterjee, S. L. McCormack, M. J. Manary, A.-M. Zeeman, K. J. Dechering, T. R. S. Kumar, P. P. Henrich, K. Gagaring, M. Ibanez, N. Kato, K. L. Kuhen, C. Fischli, M. Rottmann, D. M. Plouffe, B. Bursulaya, S. Meister, L. Rameh, J. Trappe, D. Haasen, M. Timmerman, R. W. Sauerwein, R. Suwanarusk, B. Russell, L. Renia, F. Nosten, D. C. Tully, C. H. M. Kocken, R. J. Glynne, C. Bodenreider, D. A. Fidock, T. T. Diagana and E. A. Winzeler, Targeting Plasmodium PI(4)K to eliminate malaria, Nature 504 (2013) 248–253; https://doi.org/10.1038/nature12782394087024284631 Search in Google Scholar

28. Y. Younis, F. Douelle, T.-S. Feng, D. G. Cabrera, C. L. Manach, A. T. Nchinda, S. Duffy, K. L. White, D. M. Shackleford, J. Morizzi, J. Mannila, K. Katneni, R. Bhamidipati, K. M. Zabiulla, J. T. Joseph, S. Bashyam, D. Waterson, M. J. Witty, D. Hardick, S. Wittlin, V. Avery, S. A. Charman and K. Chibale, 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential, J. Med. Chem. 55(7) (2012) 3479–3487; https://doi.org/10.1021/jm300137322390538 Search in Google Scholar

29. T. Paquet, C. L. Manach, D. G. Cabrera, Y. Younis, P. P. Henrich, T. S. Abraham, M. C. S. Lee, R. Basak, S. G. Disse, M. J. L. Monasterio, M. Bantscheff, A. Ruecker, A. M. Blagborough, S. E. Zakutansky, A. M. Zeeman, K. L. White, D. M. Shackleford, J. Mannila, J. Morizzi, C. Scheurer, I. A. Barturen, M. S. Martínez, S. Ferrer, L. M. Sanz, F. J. Gamo, J. Reader, M. Botha, K. J. Dechering, R. W. Sauerwein, A. Tungtaeng, P. Vanachayangkul, C. S. Lim, J. Burrows, M. J. Witty, K. C. Marsh, C. Bodenreider, R. Rochford, S. M. Solapure, M. B. J. Díaz, S. Wittlin, S. A. Charman, C. Donini, B. Campo, L. M. Birkholtz, K. K. Hanson, G. Drewes, C. H. M. Kocken, M. J. Delves, D. Leroy, D. A. Fidock, D. Waterson, L. J. Street and K. Chibale, Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase, Sci. Transl. Med. 9(387) (2017) Article ID 9735; https://doi.org/10.1126/scitranslmed.aad9735573145928446690 Search in Google Scholar

30. A. Nagle, T. Wu, K. Kuhen, K. Gagaring, R. Borboa, C. Francek, Z. Chen, D. Plouffe, X. Lin, C. Caldwell, J. Ek, S. Skolnik, F. Liu, J. Wang, J. Chang, C. Li, B. Liu, T. Hollenbeck, T. Tuntland, J. Isbell, T. Chuan, P. B. Alper, C. Fischli, R. Brun, S. B. Lakshminarayana, M. Rottmann, T. T. Diagana, E. A. Winzeler, R. Glynne, D. C. Tully and A. K. Chatterjee, Imidazolopiperazines: Lead optimization of the second-generation antimalarial agents, J. Med. Chem. 55(9) (2012) 4244–4273; https://doi.org/10.1021/jm300041e335021822524250 Search in Google Scholar

31. T. Wu, A. Nagle, K. Kuhen, K. Gagaring, R. Borboa, C. Francek, Z. Chen, D. Plouffe, A. Goh, S. B. Lakshminarayana, J. Wu, H. Q. Ang, P. Zeng, M. L. Kang, W. Tan, M. Tan, N. Ye, X. Lin, C. Caldwell, J. Ek, S. Skolnik, F. Liu, J. Wang, J. Chang, C. Li, T. Hollenbeck, T. Tuntland, J. Isbell, C. Fischli, R. Brun, M. Rottmann, V. Dartois, T. Keller, T. Diagana, E. Winzeler, R. Glynne, D. C. Tully and A. K. Chat-terjee, Imidazolopiperazines: Hit to lead optimization of new antimalarial agents, J. Med. Chem. 54(14) (2011) 5116–5130; https://doi.org/10.1021/jm2003359695021821644570 Search in Google Scholar

32. D. Plouffe, A. Brinker, C. McNamara, K. Henson, N. Kato, K. Kuhen, A. Nagle, F. Adrián, J. T. Matzen, P. Anderson, T.-g. Nam, N. S. Gray, A. Chatterjee, J. Janes, S. F. Yan, R. Trager, J. S. Caldwell, P. G. Schultz, Y. Zhouand and E. A. Winzeler, In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen, Proc. Natl. Acad. Sci. 105(26) (2008) 9059–9064; https://doi.org/10.1073/pnas.0802982105244036118579783 Search in Google Scholar

33. A. S. Bhagavathula, A. A. Elnour and A. Shehab, Alternatives to currently used antimalarial drugs: in search of a magic bullet, Infect. Dis. Poverty 5 (2016) Article ID 103 (12 pages); https://doi.org/10.1186/s40249-016-0196-8509599927809883 Search in Google Scholar

34. C. Brunschwig, N. Lawrence, D. Taylor, E. Abay, M. Njoroge, G. S. Basarab, C. L. Manach, T. Paquet, D. G. Cabrera, A. T. Nchinda, C. de Kock, L. Wiesner, P. Denti, D. Waterson, B. Blasco, D. Leroy, M. J. Witty, C. Donini, J. Duffy, S. Wittlin, K. L. White, S. A. Charman, M. B. Jiménez-Díaz, I. Angulo-Barturen, E. Herreros, F. J. Gamo, R. Rochford, D. Mancama, T. L. Coetzer, M. E. van der Watt, J. Reader, L.-M. Birkholtz, K. C. Marsh, S. M. Solapure, J. E. Burke, J. A. McPhail, M. Vanaerschot, D. A. Fidock, P. V. Fish, P. Siegl, D. A. Smith, G. Wirjanata, R. Noviyanti, R. N. Price, J. Marfurt, K. D. Silue, L. J. Street and K. Chibale, UCT943, a next-generation Plasmodium falciparum PI4K inhibitor pre-clinical candidate for the treatment of malaria, Antimicrob. Agents Chemother. 62(9) (2018) e00012-00018; https://doi.org/10.1128/AAC.00012-18612552629941635 Search in Google Scholar

35. N. J. White, T. T. Duong, C. Uthaisin, F. Nosten, A. P. Phyo, B. Hanboonkunupakarn, S. Pukrittayakamee, P. Jittamala, K. Chuthasmit, M. S. Cheung, Y. Feng, R. Li, B. Magnusson, M. Sultan, D. Wieser, X. Xun, R. Zhao, T. T. Diagana, P. Pertel and F. J. Leong, Antimalarial activity of kaf156 in Falciparum and Vivax malaria, New Engl. J. Med. 375(12) (2016) 1152–1160; https://doi.org/10.1056/NEJMoa1602250514260227653565 Search in Google Scholar

36. J. P. Jain, F. J. Leong, L. Chen, S. Kalluri, V. Koradia, D. S. Stein, M.-C. Wolf, G. Sunkara and J. Kota, Bioavailability of lumefantrine is significantly enhanced with a novel formulation approach, an outcome from a randomized, open-label pharmacokinetic study in healthy volunteers, Antimicrob. Agents Chemother. 61(9) (2017) e00868-00817; https://doi:10.1128/AAC.00868-1710.1128/AAC.00868-17557134228630183 Search in Google Scholar

37. E. A. Ashley, K. Stepniewska, N. Lindegårdh, R. McGready, A. Annerberg, R. Hutagalung, T. Sing-toroj, G. Hla, A. Brockman, S. Proux, J. Wilahphaingern, P. Singhasivanon, N. J. White and F. Nosten, Pharmacokinetic study of artemether-lumefantrine given once daily for the treatment of uncomplicated multidrug-resistant falciparum malaria, Trop. Med. Int. Health 12(2) (2007) 201–208; https://doi.org/10.1111/j.1365-3156.2006.01785.x17300626 Search in Google Scholar

38. E. D. Crawford, J. Quan, J. A. Horst, D. Ebert, W. Wu and J. L. DeRisi, Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733, PLoS One 12(5) (2017) e0178163 (13 pages); https://doi.org/10.1371/journal.pone.0178163543970928542423 Search in Google Scholar

39. C. Cheney, Global Malaria Report Reveals Africa’s Hits and Missed: Here’s What to Do; https://www.devex.com/news/fight-against-malaria-stalling-and-could-reverse-warns-2017-world-malaria-report-91636; last access date March 24, 2021 Search in Google Scholar

40. G. D. Shanks, M. D. Edstein and D. Jacobus, Evolution from double to triple-antimalarial drug combinations, Trans. R. Soc. Trop. Med. Hyg. 109(3) (2015) 182–188; https://doi.org/10.1093/trstmh/tru19925549631 Search in Google Scholar

41. N. J. Spillman, R. J. W. Allen, C. W. McNamara, B. K. S. Yeung, E. A. Winzeler, T. T. Diagana and K. Kirk, Na regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials, Cell Host Microbe 13(2) (2013) 227–237; https://doi.org/10.1016/j.chom.2012.12.006357422423414762 Search in Google Scholar

42. M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. González-Páez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler and T. T. Diagana, Spiroindolones, a potent compound class for the treatment of malaria, Science 329 (2010) 1175–1180; https://doi.org/10.1126/science.1193225305000120813948 Search in Google Scholar

43. M. Tanner and D. de Savigny, Malaria eradication back on the table, Bull. World Health Org. 86(2) (2008) 82–83; https://doi.org/10.2471%2FBLT.07.05063310.2471/BLT.07.050633 Search in Google Scholar

44. J. S. McCarthy, A. N. Abd-Rahman, K. A. Collins, L. Marquart, P. Griffin, A. Kümmel, A. Fuchs, C. Winnips, V. Mishra, K. Csermak-Renner, J. P. Jain and P. Gandhi, Defining the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum, Antimicrob. Agents Chemother. 65(2) e01423-01420; https://doi.org/10.1128/AAC.01423-20784901133199389 Search in Google Scholar

45. S. H. I. Kappe, A. M. Vaughan, J. A. Boddey and A. F. Cowman, That was then but this is now: malaria research in the time of an eradication agenda, Science 328(5980) (2010) 862–866; https://:doi:10.1126/science.118478510.1126/science.118478520466924 Search in Google Scholar

46. The malERA Consultative Group on Drugs, A research agenda for malaria eradication: Drugs, PLoS Med. 8(1) (2011) e1000402 (9 pages); https://doi.org/10.1371/journal.pmed.1000402302668821311580 Search in Google Scholar

47. E. K. Schmitt, G. Ndayisaba, A. Yeka, K. P. Asante, M. P. Grobusch, E. Karita, H. Mugerwa, S. Asiimwe, A. Oduro, B. Fofana, S. Doumbia, G. Su, K. Csermak Renner, V. K. Venishetty, S. Sayyed, J. Straimer, I. Demin, S. Barsainya, C. Boulton and P. Gandhi, Efficacy of cipargamin (KAE609) in a randomized, phase ii dose-escalation study in adults in sub-saharan Africa with uncomplicated Plasmodium falciparum malaria, Clin. Infect. Dis. 74(10) (2022) 1831–1839; https://doi.org/10.1093/cid/ciab716915564234410358 Search in Google Scholar

48. J. N. Burrows, R. Hooft van Huijsduijnen, J. J. Möhrle, C. Oeuvray and T. N. C. Wells, Designing the next generation of medicines for malaria control and eradication, Malaria J. 12(1) (2013) Article ID 187 (20 pages); https://doi.org/10.1186/1475-2875-12-187368555223742293 Search in Google Scholar

49. W. A. Guiguemde, A. A. Shelat, D. Bouck, S. Duffy, G. J. Crowther, P. H. Davis, D. C. Smithson, M. Connelly, J. Clark, F. Zhu, M. B. Jiménez-Díaz, M. S. Martinez, E. B. Wilson, A. K. Tripathi, J. Gut, E. R. Sharlow, I. Bathurst, F. E. Mazouni, J. W. Fowble, I. Forquer, P. L. McGinley, S. Castro, I. Angulo-Barturen, S. Ferrer, P. J. Rosenthal, J. L. DeRisi, D. J. Sullivan, J. S. Lazo, D. S. Roos, M. K. Riscoe, M. A. Phillips, P. K. Rathod, W. C. Van Voorhis, V. M. Avery and R. K. Guy, Chemical genetics of Plasmodium falciparum, Nature 465(7296) (2010) 311–315; https://doi.org/10.1038/nature09099287497920485428 Search in Google Scholar

50. M. B. Jiménez-Díaz, D. Ebert, Y. Salinas, A. Pradhan, M. Lehane Adele, M.-E. Myrand-Lapierre, K. G. O’Loughlin, D. M. Shackleford, M. Justino de Almeida, A. K. Carrillo, J. A. Clark, A. S.M. Dennis, J. Diep, X. Deng, S. Duffy, A. N. Endsley, G. Fedewa, W.A. Guiguemde, M. G. Gómez, G. Holbrook, J. Horst, C. C. Kim, J. Liu, M. C.S. Lee, A. Matheny, M. S. Martínez, G. Miller, A. Rodríguez-Alejandre, L. Sanz, M. Sigal, N. J. Spillman, P. D. Stein, Z. Wang, F. Zhu, D. Waterson, S. Knapp, A. Shelat, V. M. Avery, D. A. Fidock, F.-J. Gamo, S. A. Charman, J. C. Mirsalis, H. Ma, S. Ferrer, K. Kirk, I. Angulo-Barturen, D. E. Kyle, J. L. DeRisi, D. M. Floyd and R. K. Guy, (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium, Proc. Natl. Acad. Sci. 111(50) (2014) E5455-E5462; https://doi.org/10.1073/pnas.1414221111427336225453091 Search in Google Scholar

51. N. J. Spillman and K. Kirk, The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs, Int. J. Parasitol. Drugs Drug Resist. 5(3) (2015) 149–162; https://doi.org/10.1016/j.ijpddr.2015.07.001455960626401486 Search in Google Scholar

52. A. H. Gaur, J. S. McCarthy, J. C. Panetta, R. H. Dallas, J. Woodford, L. Tang, A. M. Smith, T. B. Stewart, K. C. Branum, B. B. Freeman 3rd, N. D. Patel, E. John, S. Chalon, S. Ost, R. N. Heine, J. L. Richardson, R. Christensen, P. M. Flynn, Y. Van Gessel, B. Mitasev, J. J. Möhrle, F. Gusovsky, L. Bebrevska and R. K. Guy, Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial, Lancet Infect. Dis. 20(8) (2020) 964–975; https://doi.org/10.1016/S1473-3099(19)30611-532275867 Search in Google Scholar

53. J. E. O. Rosling, M. C. Ridgway, R. L. Summers, K. Kirk and A. M. Lehane, Biochemical characterization and chemical inhibition of PfATP4-associated Na(+)-ATPase activity in Plasmodium falciparum membranes, J. Biol. Chem. 293(34) (2018) 13327–13337; https://doi.org/10.1074/jbc.RA118.003640610992929986883 Search in Google Scholar

54. R. Zhang, R. Suwanarusk, B. Malleret, B. M. Cooke, F. Nosten, Y.-L. Lau, M. Dao, C. T. Lim, L. Renia, K. S. W. Tan and B. Russell, A Basis for rapid clearance of circulating ring-stage malaria parasites by the spiroindolone KAE609, J. Infect. Dis. 213(1) (2015) 100–104; https://doi.org/10.1093/infdis/jiv358467654426136472 Search in Google Scholar

55. S. B. Yadav, N. Chaturvedi and N. Marina, Recent advances in system based study for anti-malarial drug development process, Curr. Pharm. Des. 25(31) (2019) 3367–3377; https://doi.org/10.2174/138161282566619090216210531475893 Search in Google Scholar

56. E. A. Ashley and A. P. Phyo, Drugs in development for malaria, Drugs 78(9) (2018) 861–879; https://doi.org/10.1007/s40265-018-0911-9601350529802605 Search in Google Scholar

57. B. L. Tekwani and L. A. Walker, 8-Aminoquinolines: future role as antiprotozoal drugs, Curr. Opin. Infect. Dis. 19(6) (2006) 623–631; https://doi.org/10.1097/QCO.0b013e328010b84817075340 Search in Google Scholar

58. S. Fonteilles-Drabek, D. Reddy and T. N. C. Wells, Managing intellectual property to develop medicines for the world’s poorest, Nat. Rev. Drug Discov. 16(4) (2017) 223–224; https://doi.org/10.1038/nrd.2017.2428232725 Search in Google Scholar

59. Endemic countries in South America come together to discuss new tools for malaria elimination; Rio de Janeiro, Geneva and Seattle, October 30, 2020; https://www.mmv.org/sites/default/files/uploads/docs/press_releases/Zydus_and_MMV.pdf; last access date September 12, 2022 Search in Google Scholar

60. S. Hameed P., S. Solapure, V. Patil, P. P. Henrich, P. A. Magistrado, S. Bharath, K. Murugan, P. Viswanath, J. Puttur, A. Srivastava, E. Bellale, V. Panduga, G. Shanbag, D. Awasthy, S. Landge, S. Morayya, K. Koushik, R. Saralaya, A. Raichurkar, N. Rautela, N. Roy Choudhury, A. Ambady, R. Nandishaiah, J. Reddy, K. R. Prabhakar, S. Menasinakai, S. Rudrapatna, M. Chatterji, M. B. Jiménez-Díaz, M. S. Martínez, L. M. Sanz, O. Coburn-Flynn, D. A. Fidock, A. K. Lukens, D. F. Wirth, B. Bandodkar, K. Mukherjee, R. E. McLaughlin, D. Waterson, L. Rosenbrier-Ribeiro, K. Hickling, V. Balasubramanian, P. Warner, V. Hosagrahara, A. Dudley, P. S. Iyer, S. Narayanan, S. Kavanagh and V. K. Sambandamurthy, Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate, Nat. Commun. 6(1) (2015) Article ID 6715 (11 pages); https://doi.org/10.1038/ncomms7715438922525823686 Search in Google Scholar

61. D. M. Penarete-Vargas, A. Boisson, S. Urbach, H. Chantelauze, S. Peyrottes, L. Fraisse and H. J. Vial, A chemical proteomics approach for the search of pharmacological targets of the antimalarial clinical candidate albitiazolium in Plasmodium falciparum using photocrosslinking and click chemistry, PLoS One 9(12) (2014) e113918 (23 pages); https://doi.org/10.1371/journal.pone.0113918425474025470252 Search in Google Scholar

62. S. Schiafino-Ortega, E. Baglioni, G. Pérez-Moreno, P. R. Marco, C. Marco, D. González-Pacanowska, L. M. Ruiz-Pérez, M. P. Carrasco-Jiménez and L. C. López-Cara, 1,2-Diphenoxiethane salts as potent antiplasmodial agents, Bioorg. Med. Chem. Lett. 28(14) (2018) 2485–2489; https://doi.org/10.1016/j.bmcl.2018.05.06029880399 Search in Google Scholar

63. S. Wein, C. Tran Van Ba, M. Maynadier, Y. Bordat, J. Perez, S. Peyrottes, L. Fraisse and H. J. Vial, New insight into the mechanism of accumulation and intraerythrocytic compartmentation of albitiazolium, a new type of antimalarial, Antimicrob. Agents Chemother. 58(9) (2014) 5519–5527; https://doi.org/10.1128/AAC.00040-14413581825001307 Search in Google Scholar

64. M. Xu, J. Zhu, Y. Diao, H. Zhou, X. Ren, D. Sun, J. Huang, D. Han, Z. Zhao, L. Zhu, Y. Xu and H. Li, Novel selective and potent inhibitors of malaria parasite dihydroorotate dehydrogenase: Discovery and optimization of dihydrothiophenone derivatives, J. Med. Chem. 56(20) (2013) 7911–7924; https://doi.org/10.1021/jm400938g24073986 Search in Google Scholar

65. A. Llanos-Cuentas, M. Casapia, R. Chuquiyauri, J. C. Hinojosa, N. Kerr, M. Rosario, S. Toovey, R. H. Arch, M. A. Phillips, F. D. Rozenberg, J. Bath, C. L. Ng, A. N. Cowell, E. A. Winzeler, D. A. Fidock, M. Baker, J. J. Möhrle, R. Hooft van Huijsduijnen, N. Gobeau, N. Araeipour, N. Andenmatten, T. Rückle and S. Duparc, Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study, Lancet Infect. Dis. 18(8) (2018) 874–883; https://doi.org/10.1016/S1473-3099(18)30309-8606017329909069 Search in Google Scholar

66. R. Gujjar, A. Marwaha, F. El Mazouni, J. White, K. L. White, S. Creason, D. M. Shackleford, J. Baldwin, W. N. Charman, F. S. Buckner, S. Charman, P. K. Rathodand M. A. Phillips, Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice, J. Med. Chem. 52(7) (2009) 1864–1872; https://doi.org/10.1021/jm801343r274656819296651 Search in Google Scholar

67. J. M. Coteron, M. Marco, J. Esquivias, X. Deng, K. L. White, J. White, M. Koltun, F. El Mazouni, S. Kokkonda, K. Katneni, R. Bhamidipati, D. M. Shackleford, I. Angulo-Barturen, S. B. Ferrer, M. B. Jiménez-Díaz, F.-J. Gamo, E. J. Goldsmith, W. N. Charman, I. Bathurst, D. Floyd, D. Matthews, J. N. Burrows, P. K. Rathod, S. A. Charman and M. A. Phillips, Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential, J. Med. Chem. 54 (2011) 5540–5561; https://doi.org/10.1021/jm200592f315609921696174 Search in Google Scholar

68. R. Gujjar, F. El Mazouni, K. L. White, J. White, S. Creason, D. M. Shackleford, X. Deng, W. N. Char-man, I. Bathurst, J. Burrows, D. M. Floyd, D. Matthews, F. S. Buckner, S. A. Charman, M. A. Phillips and P. K. Rathod, Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice, J. Med. Chem. 54 (2011) 3935–3949; https://doi.org/10.1021/jm200265b312436121517059 Search in Google Scholar

69. J. S. McCarthy, J. Lotharius, T. Rückle, S. Chalon, M. A. Phillips, S. Elliott, S. Sekuloski, P. Griffin, C. L. Ng, D. A. Fidock, L. Marquart, N. S. Williams, N. Gobeau, L. Bebrevska, M. Rosario, K. Marsh and J. J. Möhrle, Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study, Lancet Infect. Dis. 17 (2017) 626–635; https://doi.org/10.1016/S1473-3099(17)30171-8544641228363636 Search in Google Scholar

70. M. A. Phillips, J. Lotharius, K. Marsh, J. White, A. Dayan, K. L. White, J. W. Njoroge, F. El Mazouni, Y. Lao, S. Kokkonda, D. R. Tomchick, X. Deng, T. Laird, S. N. Bhatia, S. March, C. L. Ng, D. A. Fidock, S. Wittlin, M. Lafuente-Monasterio, F. J. Gamo Benito, L. M. Sanz Alonso, M. Santos Martinez, M. Belen Jimenez-Diaz, S. Ferrer Bazaga, I. Angulo-Barturen, J. N. Haselden, J. Louttit, Yi Cui, A. Sridhar, A.-M. Zeeman, C. Kocken, R. Sauerwein, K. Dechering, V. M. Avery, S. Duffy, M. Delves, R. Sinden, A. Ruecker, K. S. Wickham, R. Rochford, J. Gahagen, L. Iyer, E. Riccio, J. Mirsalis, I. Bathhurst, T. Rueckle, X. Ding, B. Campo, D. Leroy, M. J. Rogers, P. K. Rathod, J. N. Burrows and S. A. Charman, A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria, Sci. Transl. Med. 7(296) (2015) p. 296ra111; https://doi.org/10.1126/scitranslmed.aaa6645453904826180101 Search in Google Scholar

71. S. Dini, S. G. Zaloumis, D. J. Price, N. Gobeau, A. Kümmel, M. Cherkaoui, J. J. Moehrle, J. S. McCarthyand J. A. Simpson, Seeking an optimal dosing regimen for OZ439/DSM265 combination therapy for treating uncomplicated falciparum malaria, J. Antimicrob. Chemother. 76(9) (2021) 2325–2334; https://doi.org/10.1093/jac/dkab181836136834179977 Search in Google Scholar

72. R. A. G. Reis, F. A. Calil, P. R. Feliciano, M. P. Pinheiro and M. C. Nonato, The dihydroorotate dehydrogenases: Past and present, Arch. Biochem. Biophys. 632 (2017) 175–191; https://doi.org/10.1016/j.abb.2017.06.01928666740 Search in Google Scholar

73. M. M. Abdou, P. M. O’Neill, E. Amigues and M. Matziari, Structure-based bioisosteric design, synthesis and biological evaluation of novel pyrimidines as antiplasmodial antifolate agents, J. Saudi Chem. Soc. (2022) Article ID 101539 (in press); https://doi.org/10.1016/j.jscs.2022.101539 Search in Google Scholar

74. Y. Yuthavong, B. Tarnchompoo, T. Vilaivan, P. Chitnumsub, S. Kamchonwongpaisan, S. A. Charman, D. N. McLennan, K. L. White, L. Vivas, E. Bongard, C. Thongphanchang, S. Taweechai, J. Vanichtanankul, R. Rattanajak, U. Arwon, P. Fantauzzi, J. Yuvaniyama, W. N. Charman and D. Matthews, Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target, Proc. Natl. Acad. Sci. 109 (2012) 16823–16828; https://doi.org/10.1073/pnas.1204556109347951123035243 Search in Google Scholar

75. M. P. Anthony, J. N. Burrows, S. Duparc, J. Jmoehrle and T. N. C. Wells, The global pipeline of new medicines for the control and elimination of malaria, Malar. J. 11 (2012) Article ID 316 (25 pages); https://doi.org/10.1186/1475-2875-11-316347225722958514 Search in Google Scholar

76. M. F. Chughlay, E. Rossignol, C. Donini, M. El Gaaloul, U. Lorch, S. Coates, G. Langdon, T. Hammond, J. Möhrle and S. Chalon, First-in-human clinical trial to assess the safety, tolerability and pharmacokinetics of P218, a novel candidate for malaria chemoprotection, Br. J. Clin. Pharmacol. 86(6) (2020) 1113–1124; https://doi.org/10.1111/bcp.1421 Search in Google Scholar

77. T. M. Belete, Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents, Hum. Microbiome J. 11 (2019) Article ID 100052 (10 pages); https://doi.org/10.1016/j.humic.2019.01.001 Search in Google Scholar

78. L. J. Goble, R. M. R. Adendorff, T. A. P. de Beer, L. L. Stephens and G. L. Blatch, The malarial drug target Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR): development of a 3-D model for identification of novel, structural and functional features and for inhibitor screening, Protein Pept. Lett. 17(1) (2010) 109–120; https://doi.org/10.2174/09298661078990954820214634 Search in Google Scholar

79. S. Oyakhirome, S. Issifou, P. Pongratz, F. Barondi, M. Ramharter, J. F. Kun, M. A. Missinou, B. Lell and P. G. Kremsner, Randomized controlled trial of fosmidomycin-clindamycin versus sulfadoxinepyrimethamine in the treatment of Plasmodium falciparum malaria, Antimicrob. Agents Chemother. 51(5) (2007) 1869–1871; https://doi.org/10.1128/AAC.01448-06185553717325227 Search in Google Scholar

80. J. F. Fernandes, B. Lell, S. T. Agnandji, R. M. Obiang, Q. Bassat, P. G. Kremsner, B. Mordmüller and M. P. Grobusch, Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials, Future Microbiol. 10 (2015) 1375–1390; https://doi.org/10.2217/FMB.15.6026228767 Search in Google Scholar

81. S. Borrmann, I. Lundgren, S. Oyakhirome, B. Impouma, P.-B. Matsiegui, A. A. Adegnika, S. Issifou, J. F. J. Kun, D. Hutchinson, J. Wiesner, H. Jomaa and P. G. Kremsner, Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria, Antimicrob. Agents Chemother. 50(8) (2006) 2713–2718; https://doi.org/10.1128/AAC.00392-06153867816870763 Search in Google Scholar

82. T. M. E. Davis, T.-Y. Hung, I.-K. Sim, H. A. Karunajeewa and K. F. Ilett, Piperaquine, Drugs 65 (2005) 75–87; https://doi.org/10.2165/00003495-200565010-0000415610051 Search in Google Scholar

83. World Wide Antimalarial Resistance Network (WWARN) DP Study Group, The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data, PLoS Med. 10(12) (2013) e1001564 (17 pages); https://doi.org/10.1371/journal.pmed.1001564384899624311989 Search in Google Scholar

84. G. Mombo-Ngoma, J. Remppis, M. Sievers, R. Zoleko Manego, L. Endamne, L. Kabwende, L. Veletzky, T. T. Nguyen, M. Groger, F. Lötsch, J. Mischlinger, L. Flohr, J. Kim, C. Cattaneo, D. Hutchinson, S. Duparc, J. Moehrle, T. P. Velavan, B. Lell, M. Ramharter, A. A. Adegnika, B. Mordmüller and P. G. Kremsner, Efficacy and safety of fosmidomycin–piperaquine as nonartemisinin-based combination therapy for uncomplicated Falciparum malaria: A single-arm, age de-escalation proof-of-concept study in Gabon, Clin. Infect. Dis. 66 (2018) 1823–1830; https://doi.org/10.1093/cid/cix112287 Search in Google Scholar

85. B. Witkowski, V. Duru, N. Khim, L. S. Ross, B. Saintpierre, J. Beghain, S. Chy, S. Kim, S. Ke, N. Kloeung, R. Eam, C. Khean, M. Ken, K. Loch, A. Bouillon, A. Domergue, L. Ma, C. Bouchier, R. Leang, R. Huy, G. Nuel, J.-C. Barale, E. Legrand, P. Ringwald, D. A. Fidock, O. Mercereau-Puijalon, F. Ariey and D. Ménard, A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype&2013;genotype association study, Lancet Infect. Dis. 17 (2017) 174–183; https://doi.org/10.1016/S1473-3099(16)30415-7526679227818097 Search in Google Scholar

86. C. M. Sheridan, V. E. Garcia, V. Ahyong and J. L. DeRisi, The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials, Malaria J. 17 (2018) Article ID 465 (13 pages); https://doi.org/10.1186/s12936-018-2616-7629212830541569 Search in Google Scholar

87. R. T. Eastman, J. White, O. Hucke, K. Yokoyama, C. L. M. J. Verlinde, M. A. Hast, L. S. Beese, M. H. Gelb, P. K. Rathod and W. C. Van Voorhis, Resistance mutations at the lipid substrate binding site of Plasmodium falciparum protein farnesyltransferase, Mol. Biochem. Parasitol. 152 (2007) 66–71; https://doi.org/10.1016/j.molbiopara.2006.11.012287594117208314 Search in Google Scholar

88. K. E. Jackson, S. Habib, M. Frugier, R. Hoen, S. Khan, J. S. Pham, L. R.de Pouplana, M. Royo, M. A. S. Santos, A. Sharma and S. A. Ralph, Protein translation in Plasmodium parasites, Trends Parasitol. 27 (2011) 467–476; https://doi.org/10.1016/j.pt.2011.05.00521741312 Search in Google Scholar

89. M. Rottmann, B. Jonat, C. Gumpp, S. K. Dhingra, M. J. Giddins, X. Yin, L. Badolo, B. Greco, D. A. Fidock, C. Oeuvray and T. Spangenberg, Preclinical antimalarial combination study of M5717, a Plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor, Antimicrob. Agents Chemother. 64(4) (2020) e02181-19; https://doi.org/10.1128/AAC.02181-19717929732041711 Search in Google Scholar

90. B. Baragaña, I. Hallyburton, M. C. S. Lee, N. R. Norcross, R. Grimaldi, T. D. Otto, W. R. Proto, A. M. Blagborough, S. Meister, G. Wirjanata, A. Ruecker, L. M. Upton, T. S. Abraham, M. J. Almeida, A. Pradhan, A. Porzelle, M. S. Martínez, J. M. Bolscher, A. Woodland, T. Luksch, S. Norval, F. Zuccotto, J. Thomas, F. Simeons, L. Stojanovski, M. Osuna-Cabello, P. M. Brock, T. S. Churcher, K. A. Sala, S. E. Zakutansky, M. B. Jiménez-Díaz, L. M. Sanz, J. Riley, R. Basak, M. Campbell, V. M. Avery, R. W. Sauerwein, K. J. Dechering, R. Noviyanti, B. Campo, J. A. Frearson, I. Angulo-Barturen, S. Ferrer-Bazaga, F. J. Gamo, P. G. Wyatt, D. Leroy, P. Siegl, M. J. Delves, D. E. Kyle, S. Wittlin, J. Marfurt, R. N. Price, R. E. Sinden, E. A. Winzeler, S. A. Charman, L. Bebrevska, D. W. Gray, S. Campbell, A. H. Fairlamb, P. A. Willis, J. C. Rayner, D. A. Fidock, K. D. Read and I. H. Gilbert, A novel multiple-stage antimalarial agent that inhibits protein synthesis, Nature 522 (2015) 315–320; https://doi.org/10.1038/nature14451470093026085270 Search in Google Scholar

91. J. S. McCarthy, Ö. Yalkinoglu, A. Odedra, R. Webster, C. Oeuvray, A. Tappert, D. Bezuidenhout, M. J. Giddins, S. K. Dhingra, D. A. Fidock, L. Marquart, L. Webb, X. Yin, A. Khandelwal and W. M. Bagchus, Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study, Lancet Infect. Dis. 21(12) (2021) 1713–1724; https://doi.org/10.1016/S1473-3099(21)00252-8861293634715032 Search in Google Scholar

92. J. S. Armistead, I. B. H. Wilson, T. H. van Kuppevelt and R. R. Dinglasan, A role for heparan sulfate proteoglycans in Plasmodium falciparum sporozoite invasion of anopheline mosquito salivary glands, Biochem. J. 438 (2011) 475–483; https://doi.org/10.1042/BJ20110694317386621663594 Search in Google Scholar

93. S. Saiwaew, J. Sritabal, N. Piaraksa, S. Keayarsa, R. Ruengweerayut, C. Utaisin, P. Sila, R. Niramis, R. Udomsangpetch, P. Charunwatthana, E. Pongponratn, S. Pukrittayakamee, A. M. Leitgeb, M. Wahl-gren, S. J. Lee, N. P. Day, N. J. White, A. M. Dondorp and K. Chotivanich, Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes, PLoS One 12(3) (2017) e0172718 (15 pages); https://doi.org/10.1371/journal.pone.0172718533206328249043 Search in Google Scholar

94. A. M. Leitgeb, P. Charunwatthana, R. Rueangveerayut, C. Uthaisin, K. Silamut, K. Chotivanich, P. Sila, K. Moll, S. J. Lee, M. Lindgren, E. Holmer, A. Färnert, M. S. Kiwuwa, J. Kristensen, C. Herder, J. Tarning, M. Wahlgren and A. M. Dondorp, Inhibition of merozoite invasion and transient de-sequestration by sevuparin in humans with Plasmodium falciparum malaria, PLoS One 12(12) (2017) e0188754 (19 pages); https://doi.org/10.1371/journal.pone.0188754573173429244851 Search in Google Scholar

95. M. Batchvarova, S. Shan, R. Zennadi, M. Lindgren, A. Leitgeb, P. S. Tamsen and M. J. Telen, Sevuparin reduces adhesion of both sickle red cells and leukocytes to endothelial cells in vitro and inhibits vaso-occlusion in vivo, Blood 122(21) (2013) Article ID 182; https://doi.org/10.1182/blood.v122.21.182.182 Search in Google Scholar

96. A. M. Vogt, A. Barragan, Q. Chen, F. Kironde, D. Spillmann and M. Wahlgren, Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1α domain of PfEMP1, Blood 101 (2003) 2405–2411; https://doi.org/10.1182/blood-2002-07-201612433689 Search in Google Scholar

97. B. Coulibaly, M. Pritsch, M. Bountogo, P. E. Meissner, E. Nebié, C. Klose, M. Kieser, N. Berens-Riha, A. Wieser, S. B. Sirima, J. Breitkreutz, R. H. Schirmer, A. Sié, F. P. Mockenhaupt, C. Drakeley, T. Bousema and O. Müller, Efficacy and safety of triple combination therapy with artesunate-amodiaquine–methylene blue for falciparum malaria in children: A randomized controlled trial in Burkina Faso, J. Infect. Dis. 211 (2015) 689–697; https://doi.org/10.1093/infdis/jiu54025267980 Search in Google Scholar

98. L. C. S. Pinheiro, L. M. Feitosa, F. F. D. Silveira and N. Boechat, Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives, Ann. Acad. Bras. Cienc. 90 (2018) 1251–1271; https://doi.org/10.1590/0001-376520182017083029873667 Search in Google Scholar

99. B. Balikagala, N. Fukuda, M. Ikeda, O. T. Katuro, S.-I. Tachibana, M. Yamauchi, W. Opio, S. Emoto, D. A. Anywar, E. Kimura, N. M. Q. Palacpac, E. I. Odongo-Aginya, M. Ogwang, T. Horii and T. Mita, Evidence of artemisinin-resistant malaria in Africa, New Engl. J. Med. 385(13) (2021) 1163–1171; https://doi.org/10.1056/NEJMoa210174634551228 Search in Google Scholar

100. S. J. Burgess, J. X. Kelly, S. Shomloo, S. Wittlin, R. Brun, K. Liebmann and D. H. Peyton, Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds, J. Med. Chem. 53(17) (2010) 6477–6489; https://doi.org/10.1021/jm1006484293991320684562 Search in Google Scholar

101. S. J. Burgess, A. Selzer, J. X. Kelly, M. J. Smilkstein, M. K. Riscoe and D. H. Peyton, A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum, J. Med. Chem. 49(18) (2006) 5623–5625; https://doi.org/10.1021/jm060399n221573816942036 Search in Google Scholar

102. K. Y. Fong and D. W. Wright, Hemozoin and antimalarial drug discovery, Future Med. Chem. 5(12) (2013) 1437–1450; https://doi.org/10.4155/fmc.13.113492819423919553 Search in Google Scholar

103. G. Wirjanata, B. F. Sebayang, F. Chalfein, N. Prayoga, I. Handayuni, R. Noviyanti, E. Kenangalem, J. R. Poespoprodjo, S. J. Burgess, D. H. Peyton, R. N. Price and J. Marfurt, Contrasting ex vivo efficacies of “reversed chloroquine” compounds in chloroquine-resistant Plasmodium falciparum and P. vivax isolates, Antimicrob. Agents Chemother. 59(9) 5721–5726; https://doi.org/10.1128/AAC.01048-15453853126149984 Search in Google Scholar

104. J. L. Vennerstrom, S. Arbe-Barnes, R. Brun, S. A. Charman, F. C. K. Chiu, J. Chollet, Y. Dong, A. Dorn, D. Hunziker, H. Matile, K. McIntosh, M. Padmanilayam, J. Santo Tomas, C. Scheurer, B. Scorneaux, Y. Tang, H. Urwyler, S. Wittlin and W. N. Charman, Identification of an antimalarial synthetic trioxolane drug development candidate, Nature 430(7002) (2004) 900–904; https://doi.org/10.1038/nature0277915318224 Search in Google Scholar

105. P. Olliaro and T. N. Wells, The global portfolio of new antimalarial medicines under development, Clin. Pharmacol. Ther. 85(6) (2009) 584–595; https://doi.org/10.1038/clpt.2009.5119404247 Search in Google Scholar

106. M. Enserink, If artemisinin drugs fail, what’s plan B?, Science 328(5980) (2010) 846–846; https://:doi:10.1126/science.328.5980.84610.1126/science.328.5980.84620466918 Search in Google Scholar

107. M. Kimura, Y. Yamaguchi, S. Takada and K. Tanabe, Cloning of a Ca(2+)-ATPase gene of Plasmodium falciparum and comparison with vertebrate Ca(2+)-ATPases, J. Cell Sci. 104(4) (1993) 1129–1136; https://doi.org/10.1242/jcs.104.4.11298314897 Search in Google Scholar

108. C. Boss, H. Aissaoui, N. Amaral, A. Bauer, S. Bazire, C. Binkert, R. Brun, C. Bürki, C.-L. Ciana, O. Corminboeuf, S. Delahaye, C. Dollinger, C. Fischli, W. Fischli, A. Flock, M.-C. Frantz, M. Girault, C. Grisostomi, A. Friedli, B. Heidmann, C. Hinder, G. Jacob, A. Le Bihan, S. Malrieu, S. Mamzed, A. Merot, S. Meyer, S. Peixoto, N. Petit, R. Siegrist, J. Trollux, T. Weller and S. Wittlin, Discovery and characterization of act-451840: an antimalarial drug with a novel mechanism of action, Chem. Med. Chem. 11(18) (2016) 1995–2014; https://doi.org/10.1002/cmdc.20160029827471138 Search in Google Scholar

109. A. Le Bihan, R. de Kanter, I. Angulo-Barturen, C. Binkert, C. Boss, R. Brun, R. Brunner, S. Buch-mann, J. Burrows, K. J. Dechering, M. Delves, S. Ewerling, S. Ferrer, C. Fischli, F. J. Gamo-Benito, N. F. Gnädig, B. Heidmann, M. B. Jiménez-Díaz, D. Leroy, M. Santos Martínez, S. Meyer, J. J. Moehrle, C. L. Ng, R. Noviyanti, A. Ruecker, L. M. Sanz, R. W. Sauerwein, C. Scheurer, S. Schleiferboeck, R. Sinden, C. Snyder, J. Straimer, G. Wirjanata, J. Marfurt, R. N. Price, T. Weller, W. Fischli, D. A. Fidock, M. Clozel and S. Wittlin, Characterization of novel antimalarial compound ACT-451840: Preclinical assessment of activity and dose-efficacy modeling, PLoS Med. 13(10) (2016) e1002138 (24 pages); https://doi.org/10.1371/journal.pmed.1002138504978527701420 Search in Google Scholar

110. A. Krause, J. Dingemanse, A. Mathis, L. Marquart, J. J. Möhrle and J. S. McCarthy, Pharmacokinetic/pharmacodynamic modelling of the antimalarial effect of actelion-451840 in an induced blood stage malaria study in healthy subjects, Br. J. Clin. Pharmacol. 82(2) (2016) 412–421; https://doi.org/10.1111/bcp.12962497215727062080 Search in Google Scholar

111. Y. K. Zhang, J. J. Plattner, Y. R. Freund, E. E. Easom, Y. Zhou, J. Gut, P. J. Rosenthal, D. Waterson, F. J. Gamo, I. Angulo-Barturen, M. Ge, Z. Li, L. Li, Y. Jian, H. Cui, H. Wang and J. Yang, Synthesis and structure-activity relationships of novel benzoxaboroles as a new class of antimalarial agents, Bioorg. Med. Chem. Lett. 21(2) (2011) 644–651; https://doi.org/10.1016/j.bmcl.2010.12.03421195617 Search in Google Scholar

112. Y.-K. Zhang, J. J. Plattner, E. E. Easom, R. T. Jacobs, D. Guo, Y. R. Freund, P. Berry, V. Ciaravino, J. C. L. Erve, P. J. Rosenthal, B. Campo, F.-J. Gamo, L. M. Sanz and J. Cao, Benzoxaborole antimalarial agents. part 5. lead optimization of novel amide pyrazinyloxy benzoxaboroles and identification of a preclinical candidate, J. Med. Chem. 60(13) (2017) 5889–5908; https://doi.org/10.1021/acs.jmedchem.7b0062128635296 Search in Google Scholar

113. E. Sonoiki, C. L. Ng, M. C. S. Lee, D. Guo, Y.-K. Zhang, Y. Zhou, M. R. K. Alley, V. Ahyong, L. M. Sanz, M. J. Lafuente-Monasterio, C. Dong, P. G. Schupp, J. Gut, J. Legac, R. A. Cooper, F.-J. Gamo, J. DeRisi, Y. R. Freund, D. A. Fidock and P. J. Rosenthal, A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue, Nature Commun. 8 (2017) Article ID 14574 (11 pages); https://doi.org/10.1038/ncomms14574534345228262680 Search in Google Scholar

114. S. Pegoraro, M. Duffey, T. D. Otto, Y. Wang, R. Rösemann, R. Baumgartner, S. K. Fehler, L. Lucan-toni, V. M. Avery, A. Moreno-Sabater, D. Mazier, H. J. Vial, S. Strobl, C. P. Sanchez and M. Lanzer, SC83288 is a clinical development candidate for the treatment of severe malaria, Nature Commun. 8(1) (2017) Article ID 14193 (15 pages); https://doi.org/10.1038/ncomms14193529032728139658 Search in Google Scholar

115. M. Duffey, C. P. Sanchez and M. Lanzer, Profiling of the anti-malarial drug candidate SC83288 against artemisinins in Plasmodium falciparum, Malaria J. 17(1) (2018) Article ID 121 (10 pages); https://doi.org/10.1186/s12936-018-2279-4586163729558913 Search in Google Scholar

116. W. Peters, B. L. Robinson and W. K. Milhous, The chemotherapy of rodent malaria. LI. Studies on a new 8-aminoquinoline, WR 238,605, Ann. Trop. Med. Parasitol. 87(6) (1993) 547–552; https://doi.org/10.1080/00034983.1993.118128098122915 Search in Google Scholar

117. N. P. D. Nanayakkara, A. L. Ager, Jr., M. S. Bartlett, V. Yardley, S. L. Croft, I. A. Khan, J. D. McChesney and L. A. Walker, Antiparasitic activities and toxicities of individual enantiomers of the 8-amino-quinoline 8-[(4-amino-1-methylbutyl)amino]-6-methoxy-4-methyl-5-[3,4-dichlorophenoxy] quino-line succinate, Antimicrob. Agents Chemother. 52(6) (2008) 2130–2137; https://doi.org/10.1128/AAC.00645-07241577418378716 Search in Google Scholar

118. S. Ramanathan-Girish, P. Catz, M. R. Creek, B. Wu, D. Thomas, D. J. Krogstad, D. De, J. C. Mirsalis and C. E. Green, Pharmacokinetics of the antimalarial drug, AQ-13, in rats and cynomolgus macaques, Int. J. Toxicol. 23(3) (2004) 179–189; https://doi.org/10.1080/1091581049047135215204721 Search in Google Scholar

119. O. A. Koita, L. Sangaré, H. D. Miller, A. Sissako, M. Coulibaly, T. A. Thompson, S. Fongoro, Y. Diarra, M. Ba, A. Maiga, B. Diallo, D. M. Mushatt, F. J. Mather, J. G. Shaffer, A. H. Anwar and D. J. Krogstad, AQ-13, an investigational antimalarial, versus artemether plus lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria: a randomised, phase 2, non-inferiority clinical trial, Lancet Infect. Dis. 17(12) (2017) 1266–1275; https://doi.org/10.1016/S1473-3099(17)30365-1570080628916443 Search in Google Scholar

120. F. Mzayek, H. Deng, F. J. Mather, E. C. Wasilevich, H. Liu, C. M. Hadi, D. H. Chansolme, H. A. Murphy, B. H. Melek, A. N. Tenaglia, D. M. Mushatt, A. W. Dreisbach, J. J. L. Lertora and D. J. Krogstad, Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers, PLoS Clin. Trials 2(1) (2007) e6 (15 pages); https://doi.org/10.1371/journal.pctr.0020006176443417213921 Search in Google Scholar

121. F. E. Sáenz, T. Mutka, K. Udenze, A. M. J. Oduola and D. E. Kyle, Novel 4-aminoquinoline analogs highly active against the blood and sexual stages of Plasmodium in vivo and in vitro, Antimicrob. Agents Chemother. 56(9) (2012) 4685–4692; https://doi.org/10.1128/AAC.01061-12342185222710117 Search in Google Scholar

122. K. J. Ewer, K. Sierra-Davidson, A. M. Salman, J. J. Illingworth, S. J. Draper, S. Biswas and A. V. S. Hill, Progress with viral vectored malaria vaccines: A multi-stage approach involving unnatural immunity, Vaccine 33 (2015) 7444–7451; https://doi.org/10.1016/j.vaccine.2015.09.094468752626476366 Search in Google Scholar

123. G. D. Shanks, Historical Review: Problematic malaria prophylaxis with quinine, Am. J. Trop. Med. 95(2) (2016) 269–272; https://doi.org/10.4269/ajtmh.16-0138497317027185766 Search in Google Scholar

124. A. Lacava, Ocular complications of chloroquine and derivatives therapy, Arq. Bras. Oftalmol. 73(2010) 384–389; https://doi.org/10.1590/S0004-27492010000400019 Search in Google Scholar

125. Y. R. Niu, B. Wei, B. Chen, L. H. Xu, X. Jing, C. L. Peng and T. Z. Ma, Amodiaquine-induced reproductive toxicity in adult male rats, Mol. Reprod. Dev. 83(2) (2016) 174–182; https://doi.org/10.1002/mrd.2260326647924 Search in Google Scholar

126. T. M. Davis, T. Y. Hung, I. K. Sim, H. A. Karunajeewa and K. F. Ilett, Piperaquine: a resurgent anti-malarial drug, Drugs 65(1) (2005) 75–87; https://doi.org/10.2165/00003495-200565010-0000415610051 Search in Google Scholar

127. K.-Y. Lu and E. R. Derbyshire, Tafenoquine: A step toward malaria elimination, Biochemistry 59(8) (2020) 911–920; https://doi.org/10.1021/acs.biochem.9b01105803483732073254 Search in Google Scholar

128. R. González, U. Hellgren, B. Greenwood and C. Menéndez, Mefloquine safety and tolerability in pregnancy: a systematic literature review, Malaria J. 13 (2014) Article ID 75 (10 pages); https://doi.org/10.1186/1475-2875-13-75394261724581338 Search in Google Scholar

129. G. Kokwaro, L. Mwai and A. Nzila, Artemether/lumefantrine in the treatment of uncomplicated falciparum malaria, Expert Opin. Pharmacother. 8(1) (2007) 75–94; https://doi.org/10.1517/14656566.8.1.7517163809 Search in Google Scholar

130. S. R. Meshnick, Artemisinin: mechanisms of action, resistance and toxicity, Int. J. Parasitol. 32(13) (2002) 1655–1660; https://doi.org/10.1016/s0020-7519(02)00194-712435450 Search in Google Scholar

131. G. L. Nixon, D. M. Moss, A. E. Shone, D. G. Lalloo, N. Fisher, P. M. O’Neill, S. A. Ward and G. A. Biagini, Antimalarial pharmacology and therapeutics of atovaquone, J. Antimicrob. Chemother. 68(5) (2013) 977–985; https://doi.org/10.1093/jac/dks504434455023292347 Search in Google Scholar

132. A. Nzila, The past, present and future of antifolates in the treatment of Plasmodium falciparum i nfection, J. Antimicrob. Chemother. 57(6) (2006) 1043–1054; https://doi.org/10.1093/jac/dkl10416617066 Search in Google Scholar

133. T. Gaillard, M. Madamet and B. Pradines, Tetracyclines in malaria, Malaria J. 14 (2015) Article ID 445 (10 pages); https://doi.org/10.1186/s12936-015-0980-0464139526555664 Search in Google Scholar

eISSN:
1846-9558
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Pharmacy, other