1. bookVolumen 72 (2022): Edición 4 (December 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Relaxin inhibits 177Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway

Publicado en línea: 18 Oct 2022
Volumen & Edición: Volumen 72 (2022) - Edición 4 (December 2022)
Páginas: 575 - 585
Aceptado: 20 Feb 2022
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. M. Kansara, M. W. Teng, M. J. Smyth and D. M. Thomas, Translational biology of osteosarcoma, Nat. Rev. Cancer. 14(11) (2014) 722–735; https://doi.org/10.1038/nrc383810.1038/nrc383825319867 Search in Google Scholar

2. J. M. Jimenez-Andrade, W. G. Mantyh, A. P. Bloom, A. S. Ferng, C. P. Geffre and P. W. Mantyh, Bone cancer pain, Ann. N. Y. Acad. Sci. 1198 (2010) 173–181; https://doi.org/10.1111/j.1749-6632.2009.05429.x10.1111/j.1749-6632.2009.05429.x564291120536932 Search in Google Scholar

3. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol. 23(7) (2014) 113–123; https://doi.org/10.1093/annonc/mdu25610.1093/annonc/mdu25625210081 Search in Google Scholar

4. L. Wang and G. B. Xue, Catalpol suppresses osteosarcoma cell proliferation through blocking epithelial-mesenchymal transition (EMT) and inducing apoptosis, Biochem Biophys. Res. Commun. 495(1) (2018) 27–34; https://doi.org/10.1016/j.bbrc.2017.10.05410.1016/j.bbrc.2017.10.05429032182 Search in Google Scholar

5. S. A. Desai, A. Manjappa and P. Khulbe, Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview, J. Egypt Natl. Canc. Inst. 33(1) (2021) Article ID 4 (14 pages); https://doi.org/10.1186/s43046-021-00059-310.1186/s43046-021-00059-333555490 Search in Google Scholar

6. I. McCarthy, The physiology of bone blood flow: a review, J. Bone Joint Surg. Am. 88(3) (2006) 4–9; https://doi.org/10.2106/JBJS.F.0089010.2106/JBJS.F.0089017079361 Search in Google Scholar

7. O. D. Sherwood, Relaxin’s physiological roles and other diverse actions, Endocr. Rev. 25(2) (2004) 205–234; https://doi.org/10.1210/er.2003-001310.1210/er.2003-001315082520 Search in Google Scholar

8. X. Wei, Y. Yang, Y. J. Jiang, J. M. Lei, J. W. Guo and H. Xiao, Relaxin ameliorates high glucose-induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway, Exp. Ther. Med. 15(1) (2018) 691–698; https://doi.org/10.3892/etm.2017.544810.3892/etm.2017.5448577259329399073 Search in Google Scholar

9. T. Thanasupawat, A. Glogowska, S. Nivedita-Krishnan, B. Wilson, T. Klonisch and S. Hombach-Klonisch, Emerging roles for the relaxin/RXFP1 system in cancer therapy, Mol. Cell Endocrinol. 487 (2019) 85–93; https://doi.org/10.1016/j.mce.2019.02.00110.1016/j.mce.2019.02.00130763603 Search in Google Scholar

10. D. Bani, A. Pini and S. K. Yue, Relaxin, insulin and diabetes: an intriguing connection, Curr. Diabetes Rev. 8(5) (2012) 329–335; https://doi.org/10.2174/15733991280208348710.2174/15733991280208348722698078 Search in Google Scholar

11. A. A. Waza, Z. Hamid, S. A. Bhat, N. U. D. Shah, M. Bhat and B. Ganai, Relaxin protects cardiomyocytes against hypoxia-induced damage in in-vitro conditions: Involvement of Nrf2/HO-1 signaling pathway, Life Sci. 213 (2018) 25–31; https://doi.org/10.1016/j.lfs.2018.08.05910.1016/j.lfs.2018.08.05930176248 Search in Google Scholar

12. A. A. Waza, S. A. Bhat and Z. Hamid, Relaxin: A magical therapy for healthy heart, Int. J. Curr. Pharm. Res. 10 (2018) 1–2; http://doi.org/10.22159/ijcpr.2018v10i1.2440510.22159/ijcpr.2018v10i1.24405 Search in Google Scholar

13. S. Bruell, A. Sethi, N. Smith, D. J. Scott, M. A. Hossain, Q. P. Wu, Z. Y. Guo, E. J. Petrie, P. R. Gooley and R. A. D. Bathgate, Distinct activation modes of the Relaxin Family Peptide Receptor 2 in response to insulin-like peptide 3 and relaxin, Sci. Rep. 7(1) (2017) Article ID 3294 (12 pages); https://doi.org/10.1038/s41598-017-03638-410.1038/s41598-017-03638-4546832528607406 Search in Google Scholar

14. Y. Radestock, C. Hoang-Vu and S. Hombach-Klonisch, Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells, Breast Cancer Res. 10(4) (2008) Article ID R71 (15 pages); https://doi.org/10.1186/bcr213610.1186/bcr2136257554518718015 Search in Google Scholar

15. V. B. Nair, C. S. Samuel, F. Separovic, M. A. Hossain and J. D. Wade, Human relaxin-2: historical perspectives and role in cancer biology, Amino Acids 43(3) (2012) 1131–1140; https://doi.org/10.1007/s00726-012-1375-y10.1007/s00726-012-1375-y22855207 Search in Google Scholar

16. A. Facciolli, A. Ferlin, L. Gianesello, A. Pepe and C. Foresta, Role of relaxin in human osteoclasto-genesis, Ann. N. Y. Acad. Sci. 1160(1) (2009) 221–225; https://doi.org/10.1111/j.1749-6632.2008.03788.x10.1111/j.1749-6632.2008.03788.x19416193 Search in Google Scholar

17. A. Ferlin, A. Pepe, A. Facciolli, L. Gianesello and C. Foresta, Relaxin stimulates osteoclast differentiation and activation, Bone 46(2) (2010) 504–513 https://doi.org/10.1016/j.bone.2009.10.00710.1016/j.bone.2009.10.00719833242 Search in Google Scholar

18. T. G. Chan, E. O’Neill, C. Habjan and B, Cornelissen, Combination strategies to improve targeted radionuclide therapy, J.Nucl. Med. 61(11) (2020) 1544–1552; https://doi.org/10.2967/jnumed.120.24806210.2967/jnumed.120.248062867961933037092 Search in Google Scholar

19. J. Yuan, C. Liu, X. Liu, Y. Wang, D. Kuai, G. Zhang and J. J. Zaknun, Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a phase II study, Clin. Nucl. Med. 38(2) (2013) 88–92; https://doi.org/10.1097/RLU.0b013e318279bf4d10.1097/RLU.0b013e318279bf4d23334120 Search in Google Scholar

20. S. Chakraborty, T. Das, S. Banerjee, L. Balogh, P. R. Chaudhari, H. D. Sarma, A. Polyak, D. Mathe, M. Venkatesh, G. Janoki and M. R. Pillai, 177Lu-EDTMP: a viable bone pain palliative in skeletal metastasis, Cancer Biother. Radiopharm. 23(2) (2008) 202–213; https://doi.org/10.1089/cbr.2007.37410.1089/cbr.2007.37418454689 Search in Google Scholar

21. C. Kumar, A. Korde, K.V. Kumari, T. Das and G. Samuel, Cellular toxicity and apoptosis studies in osteocarcinoma cells, a comparison of 177Lu-EDTMP and Lu-EDTMP, Curr. Radiopharm. 6(3) (2013) 146–151; https://doi.org/10.2174/1874471011306999002110.2174/1874471011306999002123895775 Search in Google Scholar

22. C. Kumar, R. Sharma, K. Vats, M. B Mallia, T. Das, H. Sarma and A. Dash, Comparison of the efficacy of 177Lu-EDTMP, 177Lu-DOTMP and 188Re-HEDP towards bone osteosarcoma: an in vitro study, J. Radioanal. Nucl. Chem. 319(1) (2019) 51–59; https://doi.org/10.1007/s10967-018-6283-510.1007/s10967-018-6283-5 Search in Google Scholar

23. A. A. Waza, K. Andrabi and M. Ul Hussain, Adenosine-triphosphate-sensitive K+ channel (Kir6.1): a novel phosphospecific interaction partner of connexin 43 (Cx43), Exp. Cell Res. 318(20) (2012) 2559–2566; https://doi.org/10.1016/j.yexcr.2012.08.00410.1016/j.yexcr.2012.08.00422960107 Search in Google Scholar

24. S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol. 35(4) (2007) 495–516; https://doi.org/10.1080/0192623070132033710.1080/01926230701320337211790317562483 Search in Google Scholar

25. K. J. Campbell and S. W. G. Tait, Targeting BCL-2 regulated apoptosis in cancer, Open Biol. 8(5) (2018) Article ID 18000 (11 pages); https://doi.org/10.1098/rsob.18000210.1098/rsob.180002599065029769323 Search in Google Scholar

26. S. Pattingre, A. Tassa, X. Qu, R. Garuti, X. H. Liang, N. Mizushima, M. Packer, M. D. Schneider and B. Levine, Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy, Cell 122(6) (2005) 927–939; https://doi.org/10.1016/j.cell.2005.07.00210.1016/j.cell.2005.07.00216179260 Search in Google Scholar

27. G. V. Chaitanya, A. J. Steven and P. P. Babu, PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration, Cell Commun. Signal. 8 (2010) Article ID 31 (11 pages); https://doi.org/10.1186/1478-811X-8-3110.1186/1478-811X-8-31302254121176168 Search in Google Scholar

28. E. M. Carrington, Y. Zhan, J. L. Brady, J. G. Zhang, R. M. Sutherland, N. S. Anstee, R. L. Schenk, I. B. Vikstrom, R. B. Delconte, D. Segal, N. D. Huntington, P. Bouillet, D. M. Tarlinton, D. C. Huang, A. Strasser, S. Cory, M. J. Herold and A. M. Lew, Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo, Cell Death Differ. 24(5) (2017) 878–888; https://doi.org/10.1038/cdd.2017.3010.1038/cdd.2017.30542311228362427 Search in Google Scholar

29. M. Cargnello and P. P. Roux, Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases, Microbiol. Mol. Biol. Rev. 75(1) (2011) 50–83; https://doi.org/10.1128/MMBR.00031-1010.1128/MMBR.00031-10306335321372320 Search in Google Scholar

30. S. Karunakaran, U. Saeed, M. Mishra, R. K. Valli, S. D. Joshi, D. P. Meka, P. Seth and V. Ravindranath, Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, J. Neurosci. 28(47) (2008) 12500–12509; https://doi.org/10.1523/JNEUROSCI.4511-08.200810.1523/JNEUROSCI.4511-08.2008667172519020042 Search in Google Scholar

31. Y. Wang, R. Cui, X. Zhang, Y. Qiao, X. Liu, Y. Chang, Y. Yu, F. Sun and J. Wang, SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma, Oncotarget 7(10) (2016) 11284–11298; https://doi.org/10.18632/oncotarget.702210.18632/oncotarget.7022490547326824501 Search in Google Scholar

32. H. K. Koul, M. Pal and S. Koul, Role of p38 MAP kinase signal transduction in solid tumors, Genes Cancer 4(9–10) (2013) 342–359; https://doi.org/10.1177/194760191350795110.1177/1947601913507951386334424349632 Search in Google Scholar

33. F. Engin, T. Bertin, O. Ma, M. M. Jiang, L. Wang, R. E. Sutton, L. A. Donehower and B. Lee, Notch signaling contributes to the pathogenesis of human osteosarcomas, Hum. Mol. Genet. 18(8) (2009) 1464–1470; https://doi.org/10.1093/hmg/ddp05710.1093/hmg/ddp057273380919228774 Search in Google Scholar

34. M. Tanaka, T. Setoguchi, M. Hirotsu, H. Gao, H. Sasaki, Y. Matsunoshita and S. Komiya, Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation, Br. J. Cancer 100(12) (2009) 1957–1965; https://doi.org/10.1038/sj.bjc.660506010.1038/sj.bjc.6605060271425219455146 Search in Google Scholar

35. J. S. Mo, J. H. Yoon, E. J. Ann, J. S. Ahn, H. J. Baek, H. J. Lee, S. H. Kim, Y. D. Kim, M. Y. Kim and H. S. Park, Notch1 modulates oxidative stress induced cell death through suppression of apoptosis signal-regulating kinase 1, Proc. Natl. Acad. Sci. USA 110(17) (2013) 6865–6870; https://doi.org/10.1073/pnas.120907811010.1073/pnas.1209078110363777223569274 Search in Google Scholar

36. G. Boccalini, C. Sassoli, L. Formigli, D. Bani and S. Nistri, Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: Involvement of the Notch-1 pathway, FASEB J, 29(1) (2015) 239–249; https://doi.org/10.1096/fj.14-25485410.1096/fj.14-25485425342127 Search in Google Scholar

37. Y. Y. Tan, J. D. Wade, G. W. Tregear and R. J. Summers, Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: Characterization and effects of oestrogen treatment, Br. J. Pharmacol. 127(1) (1999) 91–98; https://doi.org/10.1038/sj.bjp.070251710.1038/sj.bjp.0702517156599610369460 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo