1. bookVolumen 72 (2022): Edición 3 (September 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Bivalirudin exerts antiviral activity against respiratory syncytial virus-induced lung infections in neonatal mice

Publicado en línea: 13 Apr 2022
Volumen & Edición: Volumen 72 (2022) - Edición 3 (September 2022)
Páginas: 415 - 425
Aceptado: 20 Sep 2021
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Respiratory syncytial virus (RSV) is the most common cause of small airways inflammation in the lungs (bronchiolitis) in neonates and immunocompromised adults. The deregulation of cellular and plasma components leads to increased morbidity and mortality. The activation of the clotting cascade plays a key role in the progression of disease severity during viral infection. The current investigation studied the effect of bivalirudin (BR) on the progression and cellular effects of RSV-induced infection in the neonatal mice model. Mice (5–7 days old) were inoculated intranasally with RSV with or without BR administration (2 mg kg−1 day−1, i.v.) for 2 weeks. Tissue histopathology, inflammatory signalling genes such as TLR, and cytokines were analyzed. The results showed pneumocytes exhibiting nuclear pyknosis, cellular infiltration in lung tissue and increased lung titers in RSV-infected mice compared to the control. Furthermore, RSV-infected mice demonstrated altered clotting parameters such as D-dimer, soluble thrombomodulin, and increased inflammatory cytokines IL-5, 6, IFN-γ, IL-13, and CXCL1. Additionally, the mRNA expression analysis displayed increased levels of IL-33, TLR3, and TLR7 genes in RSV-infected lung tissue. Further, to delineate the role of micro RNAs, the qRT-PCR analysis was done, and the results displayed an increase in miR-136, miR-30b, and let-7i. At the same time, the down-regulated expression of miR-221 in RSV-infected mice compared to the control. BR treatment reduced the cellular infiltration with reduced inflammatory cytokines and normalized clotting indices. Thus, the study shows that RSV infection induces specific changes in lung tissue and the clotting related signalling mechanism. Additionally, BR treatment significantly reduces bronchiolitis and prevents the severity of the infections suggesting that BR can possibly be used to reduce the viral-mediated infections in neonates.

Keywords

1. J. W. Schweitzer and N. A. Justice, Respiratory Syncytial Virus Infection (RSV), StatPearls, Treasure Island (FL) 2020. Search in Google Scholar

2. L. Toivonen, S. Karppinen, L. Schuez-Havupalo, T. Teros-Jaakkola, J. Mertsola, M. Waris and V. Peltola, Respiratory syncytial virus infections in children 0-24 months of age in the community, J. Infect. 80 (2020) 69–75; https://doi.org/10.1016/j.jinf.2019.09.00210.1016/j.jinf.2019.09.002 Search in Google Scholar

3. G. Wennergren and S. Kristjansson, Relationship between respiratory syncytial virus bronchiolitis and future obstructive airway diseases, Eur. Respir. J. 18 (2001) 1044–1058; https://doi.org/10.1183/09031936.01.0025410110.1183/09031936.01.00254101 Search in Google Scholar

4. R. L. Smyth and P. J. Openshaw, Bronchiolitis, Lancet 368 (2006) 312–322; https://doi.org/10.1016/S0140-6736(06)69077-610.1016/S0140-6736(06)69077-6 Search in Google Scholar

5. Y. S. Kwon, S. H. Park, M. A. Kim, H. J. Kim, J. S. Park, M. Y. Lee, C. W. Lee, S. Dauti and W. I. Choi, Risk of mortality associated with respiratory syncytial virus and influenza infection in adults, BMC Infect Dis. 17 (2017) 785; https://doi.org/10.1186/s12879-017-2897-410.1186/s12879-017-2897-4573886329262784 Search in Google Scholar

6. M. Kilpelainen, E. O. Terho, H. Helenius and M. Koskenvuo, Home dampness, current allergic diseases, and respiratory infections among young adults, Thorax 56 (2001) 462–467; https://doi.org/10.1136/thorax.56.6.46210.1136/thorax.56.6.462174606611359962 Search in Google Scholar

7. E. J. Carande, A. J. Pollard and S. B. Drysdale, Management of respiratory syncytial virus bronchiolitis: 2015 Survey of Members of the European Society for Paediatric Infectious Diseases, Canad. J. Infect. Dis. Med. Microbiol. 2016 (2016) 9139537; https://doi.org/10.1155/2016/913953710.1155/2016/9139537509324927840650 Search in Google Scholar

8. S. Uematsu and S. Akira, Toll-like receptors and innate immunity, J. Mol. Med. (Berl). 84 (2006) 712–725; https://doi.org/10.1007/s00109-006-0084-y10.1007/s00109-006-0084-y16924467 Search in Google Scholar

9. E. E. To, J. Erlich, F. Liong, R. Luong, S. Liong, S. Bozinovski, H. J. Seow, J. J. O’Leary, D. A. Brooks, R. Vlahos and S. Selemidis, Intranasal and epicutaneous administration of Toll-like receptor 7 (TLR7) agonists provides protection against influenza A virus-induced morbidity in mice, Sci. Reports 9 (2019) 2366; https://doi.org/10.1038/s41598-019-38864-510.1038/s41598-019-38864-5638277330787331 Search in Google Scholar

10. M. S. Russell, M. Creskey, A. Muralidharan, C. Li, J. Gao, W. Chen, L. Larocque, J. R. Lavoie, A. Farnsworth, M. Rosu-Myles, A. M. Hashem, C. L. Yauk, J. Cao, G. Van Domselaar, T. Cyr and X. Li, Unveiling integrated functional pathways leading to enhanced respiratory disease associated with inactivated respiratory syncytial viral vaccine, Front. Immunol. 10 (2019) 597; https://doi.org/10.3389/fimmu.2019.0059710.3389/fimmu.2019.00597644943530984178 Search in Google Scholar

11. B. E. Berlioz and D. Sanghavi, Bivalirudin, StatPearls, Treasure Island (FL) 2020. Search in Google Scholar

12. K. L. Zaleski, J. A. DiNardo and V. G. Nasr, Bivalirudin for pediatric procedural anticoagulation: A narrative review, Anesth Analg. 128 (2019) 43–55; https://doi.org/10.1213/ANE.000000000000283510.1213/ANE.000000000000283529461391 Search in Google Scholar

13. M. Q. Nicol, Y. Ligertwood, M. N. Bacon, B. M. Dutia and A. A. Nash, A novel family of peptides with potent activity against influenza A viruses, J. Gen. Virol. 93 (2012) 980–986; https://doi.org/10.1099/vir.0.038679-010.1099/vir.0.038679-0 Search in Google Scholar

14. C. Ezetendu, A. Jarden, M. Hamza and R. Stewart, Bivalirudin anticoagulation for an infant with hyperbilirubinemia and elevated plasma-free hemoglobin on ECMO, J. Extra Corpor. Technol. 51 (2019) 26–28. Search in Google Scholar

15. I. J. Welsby, W. L. Jones, G. Arepally, F. De Lange, K. Yoshitani, B. Phillips-Bute, H. P. Grocott, R. Becker and G. B. Mackensen, Effect of combined anticoagulation using heparin and bivalirudin on the hemostatic and inflammatory responses to cardiopulmonary bypass in the rat, Anesthesiology 106 (2007) 295–301; https://doi.org/10.1097/00000542-200702000-0001810.1097/00000542-200702000-00018 Search in Google Scholar

16. I. Martinez, L. Lombardia, C. Herranz, B. Garcia-Barreno, O. Dominguez and J. A. Melero, Cultures of HEp-2 cells persistently infected by human respiratory syncytial virus differ in chemokine expression and resistance to apoptosis as compared to lytic infections of the same cell type, Virology 388 (2009) 31–41; https://doi.org/10.1016/j.virol.2009.03.00810.1016/j.virol.2009.03.008 Search in Google Scholar

17. Y. Sun and C. B. Lopez, Respiratory syncytial virus infection in mice and detection of viral genomes in the lung using RT-qPCR, Bio. Protoc. 6 (2016) https://doi.org/10.21769/BioProtoc.181910.21769/BioProtoc.1819 Search in Google Scholar

18. V. B. Le, J. G. Schneider, Y. Boergeling, F. Berri, M. Ducatez, J. L. Guerin, I. Adrian, E. Errazuriz-Cerda, S. Frasquilho, L. Antunes, B. Lina, J. C. Bordet, M. Jandrot-Perrus, S. Ludwig and B. Riteau, Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis, Am. J. Respir. Crit. Care Med. 191 (2015) 804–819; https://doi.org/10.1164/rccm.201406-1031OC10.1164/rccm.201406-1031OC Search in Google Scholar

19. V. B. Le, B. Riteau, M. C. Alessi, C. Couture, M. Jandrot-Perrus, C. Rheaume, M. E. Hamelin and G. Boivin, Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections, Br. J. Pharmacol. 175 (2018) 388–403; https://doi.org/10.1111/bph.14084.10.1111/bph.14084 Search in Google Scholar

20. D. Gkentzi, G. Dimitriou and A. Karatza, Non-pulmonary manifestations of respiratory syncytial virus infection, J. Thorac. Dis. 10 (2018) S3815-S3818; https://doi.org/10.21037/jtd.2018.10.38.10.21037/jtd.2018.10.38 Search in Google Scholar

21. P. M. Tiwari, E. Eroglu, S. Boyoglu-Barnum, Q. He, G. A. Willing, K. Vig, V. A. Dennis and S. R. Singh, Atomic force microscopic investigation of respiratory syncytial virus infection in HEp-2 cells, J. Microsc. 253 (2014) 31–41; https://doi.org/10.1111/jmi.1209510.1111/jmi.12095 Search in Google Scholar

22. L. Ulloa, R. Serra, A. Asenjo and N. Villanueva, Interactions between cellular actin and human respiratory syncytial virus (HRSV), Virus Res. 53 (1998) 13–25; https://doi.org/10.1016/s0168-1702(97)00121-410.1016/S0168-1702(97)00121-4 Search in Google Scholar

23. A. R. Alsuwaidi, A. Albawardi, S. Almarzooqi, S. Benedict, A. R. Othman, S. M. Hartwig, S. M. Varga and A. K. Souid, Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice, Virology 454 (2014) 263–269; https://doi.org/10.1016/j.virol.2014.02.02810.1016/j.virol.2014.02.02824725953 Search in Google Scholar

24. C. T. Esmon, The impact of the inflammatory response on coagulation, Thromb Res. 114 (2004) 321–327; https://doi.org/10.1016/j.thromres.2004.06.02810.1016/j.thromres.2004.06.02815507261 Search in Google Scholar

25. R. Trisolini, R. Dallari, A. Cancellieri and V. Poletti, Interstitial Lung Diseases, 1st ed., JayPee Brothers Medical Publisher, New Delhi 2012, pp. 234–235. Search in Google Scholar

26. T. T. Keller, K. F. van der Sluijs, M. D. de Kruif, V. E. Gerdes, J. C. Meijers, S. Florquin, T. van der Poll, E. C. van Gorp, D. P. Brandjes, H. R. Buller and M. Levi, Effects on coagulation and fibrinolysis induced by influenza in mice with a reduced capacity to generate activated protein C and a deficiency in plasminogen activator inhibitor type 1, Circ. Res. 99 (2006) 1261–1269; https://doi.org/10.1161/01.RES.0000250834.29108.1a10.1161/01.RES.0000250834.29108.1a17068293 Search in Google Scholar

27. M. van Wissen, T. T. Keller, E. C. van Gorp, V. E. Gerdes, J. C. Meijers, G. J. van Doornum, H. R. Buller and D. P. Brandjes, Acute respiratory tract infection leads to procoagulant changes in human subjects, J. Thromb Haemost. 9 (2011) 1432–1434; https://doi.org/10.1111/j.1538-7836.2011.04340.x10.1111/j.1538-7836.2011.04340.x716693521605331 Search in Google Scholar

28. X. Stephenne, E. Nicastro, S. Eeckhoudt, C. Hermans, O. Nyabi, C. Lombard, M. Najimi and E. Sokal, Bivalirudin in combination with heparin to control mesenchymal cell procoagulant activity, PLoS One 7 (2012) e42819; https://doi.org/10.1371/journal.pone.004281910.1371/journal.pone.0042819341678822900053 Search in Google Scholar

29. D. J. Groskreutz, M. M. Monick, L. S. Powers, T. O. Yarovinsky, D. C. Look and G. W. Hunninghake, Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells, J. Immunol. 176 (2006) 1733–1740; https://doi.org/10.4049/jimmunol.176.3.1733.10.4049/jimmunol.176.3.173316424203 Search in Google Scholar

30. J. A. Patel, Z. Jiang, N. Nakajima and M. Kunimoto, Autocrine regulation of interleukin-8 by inter-leukin-1a in respiratory syncytial virus-infected pulmonary epithelial cells in vitro, Immunology 95 (1998) 501–506; https://doi.org/10.1046/j.1365-2567.1998.00640.x10.1046/j.1365-2567.1998.00640.x13643449893037 Search in Google Scholar

31. T. Liu, N. Zang, N. Zhou, W. Li, X. Xie, Y. Deng, L. Ren, X. Long, S. Li, L. Zhou, X. Zhao, W. Tu, L. Wang, B. Tan and E. Liu, Resveratrol inhibits the TRIF-dependent pathway by upregulating sterile alpha and armadillo motif protein, contributing to anti-inflammatory effects after respiratory syncytial virus infection, J. Virol. 88 (2014) 4229–4236; https://doi.org/10.1128/JVI.03637-1310.1128/JVI.03637-13399372524478430 Search in Google Scholar

32. T. Kawai and S. Akira, TLR signaling, Semin. Immunol. 19 (2007) 24–32; https://doi.org/10.1016/j.smim.2006.12.00410.1016/j.smim.2006.12.00417275323 Search in Google Scholar

33. J. M. Schuh, K. Blease, H. Bruhl, M. Mack and C. M. Hogaboam, Intrapulmonary targeting of RANTES/CCL5-responsive cells prevents chronic fungal asthma, Eur. J. Immunol. 33 (2003) 3080–3090; https://doi.org/10.1002/eji.20032391710.1002/eji.20032391714579276 Search in Google Scholar

34. F. J. Culley, A. M. Pennycook, J. S. Tregoning, J. S. Dodd, G. Walzl, T. N. Wells, T. Hussell and P. J. M. Openshaw, Role of CCL5 (RANTES) in viral lung disease, J. Virol. 80 (2006) 8151–8157; https://doi.org/10.1128/JVI.00496-0610.1128/JVI.00496-06156383716873271 Search in Google Scholar

35. S. Huang, W. Wei and Y. Yun, Upregulation of TLR7 and TLR3 gene expression in the lung of respiratory syncytial virus infected mice, Wei Sheng Wu Xue Bao 49 (2009) 239–245. Search in Google Scholar

36. N. W. Lukacs, J. J. Smit, S. Mukherjee, S. B. Morris, G. Nunez and D. M. Lindell, Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation, J. Immunol. 185 (2010) 2231–2239; https://doi.org/10.4049/jimmunol.100073310.4049/jimmunol.1000733300645420624950 Search in Google Scholar

37. T. H. Kim and H. K. Lee, Innate immune recognition of respiratory syncytial virus infection, BMB Rep. 47 (2014) 184–191; https://doi.org/10.5483/bmbrep.2014.47.4.05010.5483/BMBRep.2014.47.4.050416388724568879 Search in Google Scholar

38. F. C. M. Kirsebom, F. Kausar, R. Nuriev, S. Makris and C. Johansson, Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection, Mucosal Immunol. 12 (2019) 1244–1255; https://doi.org/10.1038/s41385-019-0190-010.1038/s41385-019-0190-0677805531358860 Search in Google Scholar

39. M. Goritzka, S. Makris, F. Kausar, L. R. Durant, C. Pereira, Y. Kumagai, F. J. Culley, M. Mack, S. Akira and C. Johansson, Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes, J. Exp. Med. 212 (2015) 699–714; https://doi.org/10.1084/jem.2014082510.1084/jem.20140825441933925897172 Search in Google Scholar

40. V. Papayannopoulos, Neutrophil extracellular traps in immunity and disease, Nat. Rev. Immunol. 18 (2018) 134–147; https://doi.org/10.1038/nri.2017.10510.1038/nri.2017.10528990587 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo