1. bookVolumen 72 (2022): Edición 1 (March 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Evaluation of COVID-19 protease and HIV inhibitors interactions

Publicado en línea: 30 Aug 2021
Volumen & Edición: Volumen 72 (2022) - Edición 1 (March 2022)
Páginas: 1 - 8
Aceptado: 27 Feb 2021
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.-H. Tian, Y.-Y. Pei, M.-L. Yuan, Y.-L. Zhang, F.-H. Dai, Y. Liu, Q.-M. Wang, J.-J. Zheng, L. Xu, E. C. Holmes and Y.-Z. Zhang, A new coronavirus associated with human respiratory disease in China, Nature 579 (2020) 265–269; https://doi.org/10.1038/s41586-020-2008-310.1038/s41586-020-2008-3709494332015508 Search in Google Scholar

2. J. Xu, S. Zhao, T. Teng, A. E. Abdalla, W. Zhu, L. Xie, Y. Wang and X. Guo, Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses 12 (2020) Article ID 244; https://doi.org/10.3390/v1202024410.3390/v12020244707719132098422 Search in Google Scholar

3. Z. Wang, X. Chen, Y. Lu, F. Chen and W. Zhang, Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment, Biosci. Trends 14 (2020) 64–68; https://doi.org/10.5582/bst.2020.0103010.5582/bst.2020.0103032037389 Search in Google Scholar

4. J. Lim, S. Jeon, H. Y. Shin, M. J. Kim, Y. M. Seong, W. J. Lee, K. W. Choe, Y. M. Kang, B. Lee and S. J. Park, Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR, J. Korean Med. Sci. 35 (2020) e79; https://doi.org/10.3346/jkms.2020.35.e7910.3346/jkms.2020.35.e79702591032056407 Search in Google Scholar

5. C. M. Chu, V. C. Cheng, I. F. Hung, M. M. Wong, K. H. Chan, K. S. Chan, R. Y. Kao, L. L. Poon, C. L. Wong, Y. Guan, J. S. Peiris and K. Y. Yuen, Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings, Thorax 59 (2004) 252–256; https://doi.org/10.1136/thorax.2003.01265810.1136/thorax.2003.012658174698014985565 Search in Google Scholar

6. S. J. Hurwitz and R. F. Schinazi, Practical considerations for developing nucleoside reverse transcriptase inhibitors, Drug Discov. Today Technol. 9 (2012) e183–e193; https://doi.org/10.1016/j.ddtec.2012.09.00310.1016/j.ddtec.2012.09.003361202523554824 Search in Google Scholar

7. N. Atatreh, S. Hasan, B. R. Ali and M. A. Ghattas, Computer-aided approaches reveal trihydroxychroman and pyrazolone derivatives as potential inhibitors of SARS-CoV-2 virus main protease, Acta Pharm. 71 (2021) 325–333; https://doi.org/10.2478/acph-2021-004010.2478/acph-2021-0040 Search in Google Scholar

8. Z. Lv, Y. Chu and Y. Wang, HIV protease inhibitors: a review of molecular selectivity and toxicity, HIV/AIDS (Auckland) 7 (2015) 95–104; https://doi.org/10.2147/HIV.S7995610.2147/HIV.S79956439658225897264 Search in Google Scholar

9. Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, Z. Zhou, L. Han, K. Karapetyan, S. Dracheva, B. A. Shoemaker, E. Bolton, A. Gindulyte and S. H. Bryant, PubChem’s BioAssay Database, Nucleic Acids Res. 40 (2012) D400-D412; https://doi.org/10.1093/nar/gkr113210.1093/nar/gkr1132324505622140110 Search in Google Scholar

10. N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, Open Babel: An open chemical toolbox, J. Cheminform. 3 (2011) Article ID 33; https://doi.org/10.1186/1758-2946-3-3310.1186/1758-2946-3-33319895021982300 Search in Google Scholar

11. O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455–461; https://doi.org/10.1002/jcc.2133410.1002/jcc.21334304164119499576 Search in Google Scholar

12. R. A. Laskowski and M. B. Swindells, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery, J. Chem. Inf. Model. 51 (2011) 2778–2786; https://doi.org/10.1021/ci200227u10.1021/ci200227u21919503 Search in Google Scholar

13. M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong and G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. 30 (2020) 269–271; https://doi.org/10.1038/s41422-020-0282-010.1038/s41422-020-0282-0705440832020029 Search in Google Scholar

14. S. Daoud, S. J. Alabed, L. A. Dahabiyeh, Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies, Acta Pharm. 71 (2021) 163–174; https://doi.org/10.2478/acph-2021-001610.2478/acph-2021-001633151166 Search in Google Scholar

15. T. P. Sheahan, A. C. Sims, S. R. Leist, A. Schäfer, J. Won, A. J. Brown, S. A. Montgomery, A. Hogg, D. Babusis, M. O. Clarke, J. E. Spahn, L. Bauer, S. Sellers, D. Porter, J. Y. Feng, T. Cihlar, R. Jordan, M. R. Denison and R. S. Baric, Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, Nat. Commun. 11 (2020) Article ID 222; https://doi.org/10.1038/s41467-019-13940-610.1038/s41467-019-13940-6695430231924756 Search in Google Scholar

16. A. H. de Wilde, D. Jochmans, C. C. Posthuma, J. C. Zevenhoven-Dobbe, S. van Nieuwkoop, T. M. Bestebroer, B. G. van den Hoogen, J. Neyts and E. J. Snijder, Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture, Antimicrob. Agents Chemother. 58 (2014) 4875–4884; https://doi.org/10.1128/AAC.03011-1410.1128/AAC.03011-14413607124841269 Search in Google Scholar

17. E. C. Vatansever, K. S. Yang, K. Kratch, A. Drelich, C.-C. Cho, D. M. Mellot, S. Xu, C.-T. K. Tseng and W. R. Liu, Targeting the SARS-CoV-2 main protease to repurpose drugs for COVID-19, bioRxiv preprint [Internet], posted May 23, 2020; https://doi.org/10.1101/2020.05.23.11223510.1101/2020.05.23.112235726349832511370 Search in Google Scholar

18. B. R. Beck, B. Shin, Y. Choi, S. Park and K. Kang, Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model, Comput. Struct. Biotechnol. J. 18 (2020) 784–790; https://doi.org/10.1016/j.csbj.2020.03.02510.1016/j.csbj.2020.03.025711854132280433 Search in Google Scholar

19. M. A. M. Subbaiah, S. Mandlekar, S. Desikan, T. Ramar, L. Subramani, M. Annadurai, S. D. Desai, S. Sinha, S. M. Jenkins and M. R. Krystal, Design, synthesis, and pharmacokinetic evaluation of phosphate and amino acid ester prodrugs for improving the oral bioavailability of the HIV-1 protease inhibitor atazanavir, J. Med. Chem. 62 (2019) 3553–3574; https://doi.org/10.1021/acs.jmedchem.9b0000210.1021/acs.jmedchem.9b0000230938524 Search in Google Scholar

20. M. Rittweger and K. Arastéh, Clinical pharmacokinetics of darunavir, Clin. Pharmacokin. 46 (2007) 739–756; https://doi.org/10.2165/00003088-200746090-0000210.2165/00003088-200746090-0000217713972 Search in Google Scholar

21. M. Mahdi, J. A. Mótyán, Z. I. Szojka, M. Golda, M. Miczi and J. Tőzsér, Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2’s main protease, Virol. J. 17 (2020) Article ID 190; https://doi.org/10.1186/s12985-020-01457-010.1186/s12985-020-01457-0768964033243253 Search in Google Scholar

22. S. Jo, S. Kim and D. H. Shin, Inhibition of SARS-CoV 3CL protease by flavonoids, J. Enzyme Inhib. Med. Chem. 35 (2020) 145–151; https://doi.org/10.1080/14756366.2019.169048010.1080/14756366.2019.1690480688243431724441 Search in Google Scholar

23. L. Zhang, D. Lin, Y. Kusov, Y. Nian, Q. Ma, J. Wang, A. von Brunn, P. Leyssen, K. Lanko, J. Neyts, A. de Wilde, E. J. Snijder and H. Liu, α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment, J. Med. Chem. 63 (2020) 4562–4578; https://doi.org/10.1021/acs.jmedchem.9b0182810.1021/acs.jmedchem.9b01828709807032045235 Search in Google Scholar

24. M. M. Ghahremanpour, J. Tirado-Rives, M. Deshmukh, J. A. Ippolito, C.-H. Zhang, I. Cabeza de Vaca, M.-E. Liosi, K. S. Anderson and W. L. Jorgensen, Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2, ACS Med. Chem. Lett. 11 (2020) 2526–2533; https://doi.org/10.1021/acsmedchemlett.0c0052110.1021/acsmedchemlett.0c00521760532833324471 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo