1. bookVolumen 71 (2021): Edición 2 (June 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment

Publicado en línea: 04 Nov 2020
Volumen & Edición: Volumen 71 (2021) - Edición 2 (June 2021)
Páginas: 245 - 266
Aceptado: 21 Jun 2020
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. A. H. N. Kamdje, P. F. S. Etet, L. Vecchio, J. M. Muller, M. Krampera and K. E. Lukong, Signaling pathways in breast cancer: Therapeutic targeting of the microenvironment, Cell. Signal.26 (2014) 2843–2856; https://doi.org/10.1016/j.cellsig.2014.07.03410.1016/j.cellsig.2014.07.03425093804Search in Google Scholar

2. K. Velaei, N. Samadi, B. Barazvan and J. S. Rad, Tumor microenvironment-mediated chemoresistance in breast cancer, The Breast30 (2016) 92–100; https://doi.org/10.1016/j.breast.2016.09.00210.1016/j.breast.2016.09.00227668856Search in Google Scholar

3. Q. J. Guo, J. Li and H. S. Lin, Effect and molecular mechanisms of traditional chinese medicine on regulating tumor immunosuppressive microenvironment, BioMed Res. Int.2015 (2015) 261620; https://doi.org/10.1155/2015/26162010.1155/2015/261620448674226161392Search in Google Scholar

4. M. Pesic and F. R. Greten, Inflammation and cancer: tissue regeneration gone awry, Curr. Opin. Cell. Biol.43 (2016) 55–61; https://doi.org/10.1016/j.ceb.2016.07.01010.1016/j.ceb.2016.07.01027521599Search in Google Scholar

5. M. Suarez-Carmona, J. Lesage, D. Cataldo and C. Gilles, EMT and inflammation: inseparable actors of cancer progression, Mol. Oncol.11 (2017) 805–823; https://doi.org/10.1002/1878-0261.1209510.1002/1878-0261.12095549649128599100Search in Google Scholar

6. X. Y. Li, L. Su, Y. M. Jiang, W. B. Gao, C. W. Xu, C. Q. Zeng, J. Song, Y. Xu, W. C. Weng and W. B. Liang, The antitumor effect of xihuang pill on treg cells decreased in tumor microenvironment of 4T1 breast tumor-bearing mice by PI3K/AKT~AP-1 signaling pathway, Evid.-Based Compl. Alt. Med.2018 (2018) 6714829; https://doi.org/10.1155/2018/671482910.1155/2018/6714829593758029849718Search in Google Scholar

7. F. R. Balkwill and A. Mantovani, Cancer-related inflammation: Common themes and therapeutic opportunities, Semin. Cancer Biol.22 (2012) 33–40; https://doi.org/10.1016/j.semcancer.2011.12.00510.1016/j.semcancer.2011.12.00522210179Search in Google Scholar

8. Z. T. Li, Y. J. Zhu, C. C. Li, R. Trinh, X. Y. Ren, F. M. Sun, Y. F. Wang, P. Z. Shang, T. Wang, M. Wang, S. L. Morrison and J. Zhang, Anti-VEGFR2-interferon-α2 regulates the tumor microenvironment and exhibits potent antitumor efficacy against colorectal cancer, Oncoimmunology6 (2017) e1290038; https://doi.org/10.1080/2162402X.2017.129003810.1080/2162402X.2017.1290038538437628405526Search in Google Scholar

9. F. L. Bai, Z. S. Niu, H. Tian, S. M. Li, Z. Lv, T. Y. Zhang, G. P. Ren and D. S. Li, Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy, Immunol. Lett.159 (2014) 36–46; https://doi.org/10.1016/j.imlet.2014.02.00910.1016/j.imlet.2014.02.00924613899Search in Google Scholar

10. T. van der Heijden, I. Bot and J. Kuiper, The IL-12 cytokine family in cardiovascular diseases, Cytokine122 (2019) 154188; https://doi.org/10.1016/j.cyto.2017.10.01010.1016/j.cyto.2017.10.01029074035Search in Google Scholar

11. K. Singh, M. Roy, P. Prajapati, A. Lipatova, L. Sripada, D. Gohel, A. Singh, M. Mane, M. M. Godbole, P. M. Chumakov and R. Singh, NLRX1 regulates TNF-α-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells, BBA-Mol. Basis Dis.1865 (2019) 1460–1476; https://doi.org/10.1016/j.bbadis.2019.02.01810.1016/j.bbadis.2019.02.01830802640Search in Google Scholar

12. K. A. Silverio and S. A. Patel, Harnessing antitumor immunity: Employment of tumor recall antigens to optimize the inflammatory response to cancer (Review), Oncol. Lett.13 (2017) 2015–2020; https://doi.org/10.3892/ol.2017.572110.3892/ol.2017.5721540327428454356Search in Google Scholar

13. S. Suman, P. K. Sharma, G. Rai, S. Mishra, D. Arora, P. Gupta and Y. Shukla, Current perspectives of molecular pathways involved in chronic inflammation-mediated breast cancer, Biochem. Bioph. Res. Commun.472 (2016) 401–409; https://doi.org/10.1016/j.bbrc.2015.10.13310.1016/j.bbrc.2015.10.13326522220Search in Google Scholar

14. I. Uehara and N. Tanaka, Role of p53 in the regulation of the inflammatory tumor microenvironment and tumor suppression, Cancers10 (2018) 219; https://doi.org/10.3390/cancers1007021910.3390/cancers10070219607129129954119Search in Google Scholar

15. J. F. Lima, S. Nofech-Mozes, J. Bayani and J. M. S. Bartlett, EMT in breast carcinoma – A review, J. Clin. Med.5 (2016) 65; https://doi.org/10.3390/jcm507006510.3390/jcm5070065496199627429011Search in Google Scholar

16. L. Yan, F. Xu and C. L. Dai, Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma, J. Exp. Clin. Cancer Res.37 (2018) 203; https://doi.org/10.1186/s13046-018-0887-z10.1186/s13046-018-0887-z611447730157906Search in Google Scholar

17. L. EL-Hajjar, N. Jalaleddine, A. Shaito, K. Zibara, J. M. Kazan, J. El-Saghir and M. El-Sabban, Bevacizumab induces inflammation in MDA-MB-231 breast cancer cell line and in a mouse model, Cell. Signal.53 (2019) 400–412; https://doi.org/10.1016/j.cellsig.2018.11.00710.1016/j.cellsig.2018.11.00730445167Search in Google Scholar

18. H. N. Chang, S. T. Huang, Y. C. Yeh, H. S. Wang, T. H. Wang, Y. H. Wu and J. S. Pang, Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells, J. Ethnopharmacol.174 (2015) 474–481; https://doi.org/10.1016/j.jep.2015.08.05010.1016/j.jep.2015.08.05026341616Search in Google Scholar

19. S. L. Hsuan, S. C. Chang, S. Y. Wang, T. L. Liao, T. T. Jong, M. S. Chien, W. C. Lee, S. S. Chen and J. W. Liao, The cytotoxicity to leukemia cells and antiviral effects of isatis indigotica extracts on pseudorabies virus, J. Ethnopharmacol.123 (2009) 61–67; https://doi.org/10.1016/j.jep.2009.02.02810.1016/j.jep.2009.02.028712679319429341Search in Google Scholar

20. Y. H. Liang, H. X. Hou, D. R. Li, J. Qin, L. Qiu and H. H. Wu, Studies on in vitro anticancer activity of tryptanthrin B, Chin. Tradit. Herbal Drugs31 (2000) 531–533; https://doi.org/10.3321/j.issn:0253-2670.2000.07.029Search in Google Scholar

21. J. P. Li, G. H. Zhu, Y. Yuan and M. X. Liu, Anti-tumor and immune function regulation effects of radix isatidis polysaccharides in vivo, Nat. Prod. Res. Dev.29 (2017) 2010–2016; https://doi.org/10.16333/j.1001-6880.2017.12.003Search in Google Scholar

22. L. L. Liu, J. Chen and Y. P. Shi, Advances in studies on antitumor of Chinese materia medica with heat-clearing and toxin-resolving functions, Chin. Tradit. Herbal Drugs43 (2012) 1203–1212; https://www.cqvip.com/qk/80172x/201211/42183551.htmlSearch in Google Scholar

23. G. Honda and M. Tabata, Isolation of antifungal principle tryptanthrin, from Strobilanthes Cusia O. Kuntze, Planta Med.36 (1979) 85–86; https://doi.org/10.1055/s-0028-109724510.1055/s-0028-1097245461559Search in Google Scholar

24. R. Kaur, S. K. Manjal, R. K. Rawal and K. Kumar, Recent synthetic and medicinal perspectives of tryptanthrin, Bioorg. Med. Chem.25 (2017) 4533–4552; https://doi.org/10.1016/j.bmc.2017.07.00310.1016/j.bmc.2017.07.00328720329Search in Google Scholar

25. E. H. Jung, J. Y. Jung, H. L. Ko, J. K. Kim, S. M. Park, D. H. Jung, C. A. Park, Y. W. Kim, S. K. Ku, I. J. Cho and S. C. Kim, Tryptanthrin prevents oxidative stress-mediated apoptosis through AMP-activated protein kinase-dependent p38 mitogen-activated protein kinase activation, Arch. Pharm. Res.40 (2017) 1071–1086; https://doi.org/10.1007/s12272-017-0947-510.1007/s12272-017-0947-5Search in Google Scholar

26. S. Lee, D. C. Kim, H. Y. Baek, K. D. Lee, Y. C. Kim and H. Oh, Anti-neuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells, Arch. Pharm. Res.41 (2018) 419–430; https://doi.org/10.1007/s12272-018-1020-810.1007/s12272-018-1020-8Search in Google Scholar

27. S. T. Yu, J. W. Chern, T. M. Chen, Y. F. Chiu, H. T. Chen and Y. H. Chen, Cytotoxicity and reversal of multidrug resistance by tryptanthrin-derived indoloquinazolines, Acta Pharmacol. Sin.31 (2010) 259–264; https://doi.org/10.1038/aps.2009.19810.1038/aps.2009.198Search in Google Scholar

28. Y. W. Kwon, S. Y. Cheon, S. Y. Park, J. Song and J. H. Lee, Tryptanthrin suppresses the activation of the LPS-treated BV2 microglial cell line via Nrf2/HO-1 antioxidant signaling, Front Cell Neurosci.11 (2017) 18; https://doi.org/10.3389/fncel.2017.0001810.3389/fncel.2017.00018Search in Google Scholar

29. M. J. Micallef, K. Iwaki, T. Ishihara, S. Ushio, M. Aga, T. Kunikata, S. Koya-Miyata, T. Kimoto, M. Ikeda and M. Kurimoto, The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice, Int. Immunopharmacol.2 (2002) 565–578; https://doi.org/10.1016/S1567-5769(01)00206-510.1016/S1567-5769(01)00206-5Search in Google Scholar

30. R. Kaur, S. K. Manjal, R. K. Rawal and K. Kumar, Recent Synthetic and Medicinal Perspectives of Tryptanthrin, Bioorg. Med. Chem.25 (2017) 4533–4552; https://doi.org/10.1016/j.bmc.2017.07.00310.1016/j.bmc.2017.07.003Search in Google Scholar

31. W. Zhou, Q. F. Zeng, D. Lai, J. L. Cho, X. Y. Zhang and X. C. Shen, Effect of tryptanthrin on proliferation of human breast cancer MCF-7 cells via MAPK signaling pathway, Chin. Pharm. J.54 (2019) 693–698; https://doi.org/10.11669/cpj.2019.09.005Search in Google Scholar

32. X. M. Liao and K. N. Leung, Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells, Chem. Biol. Interact.203 (2013) 512–521; https://doi.org/10.1016/j.cbi.2013.03.00110.1016/j.cbi.2013.03.00123500671Search in Google Scholar

33. S. Han, D. F. Li, C. M. Wu, X. R. Ma, R. G. Song and Y. Wang, Synthesis and characterization of indolo quinazoline derivatives, Chem. Reagents33 (2011) 883–886; https://doi.org/10.13822/j.cnki.hxsj.2011.10.011Search in Google Scholar

34. J. H. Feng, D. L. Song, S. Y. Jiang, X. H. Yang, T. T. Ding, H. Zhang, J. M. Luo, J. Liao and Q. Yin, Quercetin restrains TGF-β1-induced epithelial–mesenchymal transition by inhibiting Twist1 and regulating E-cadherin expression, Biochem. Bioph. Res. Commun.498 (2018) 132–138; https://doi.org/10.1016/j.bbrc.2018.02.04410.1016/j.bbrc.2018.02.04429425820Search in Google Scholar

35. M. Mizui, Natural and modified IL-2 for the treatment of cancer and autoimmune diseases, Clin. Immunol.206 (2019) 63–70; https://doi.org/10.1016/j.clim.2018.11.00210.1016/j.clim.2018.11.00230415086Search in Google Scholar

36. A. Tang and F. Harding, The challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer, Cytokine: X1 (2019) 100001; https://doi.org/10.1016/j.cytox.2018.10000110.1016/j.cytox.2018.100001Search in Google Scholar

37. X. G. Li, P. Lu, B. Li, W. F. Zhang, R. Yang, Y. Chu and K. Y. Luo, Interleukin 2 and interleukin 10 function synergistically to promote CD8+ T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer, Int. J. Biochem. Cell Biol.87 (2017) 1–7; https://doi.org/doi:10.1016/j.biocel.2017.03.00310.1016/j.biocel.2017.03.003718553428274688Search in Google Scholar

38. M. H. Mannino, Z. W. Zhu, H. P. Xiao, Q. Bai, M. R. Wakefield and Y. J. Fang, The paradoxical role of IL-10 in immunity and cancer, Cancer Lett.367 (2015) 103–107; https://doi.org/10.1016/j.canlet.2015.07.00910.1016/j.canlet.2015.07.00926188281Search in Google Scholar

39. R. Liu, H. G. Zheng, W. D. Li, Q. J. Guo, S. L. He, Y. Hirasaki, W. Hou, B. J. Hua, C. H. Li, Y. J. Bao, Y. B. Gao, X. Qi, Y. X. Pei and Y. Zhang, Anti-tumor enhancement of Fei-Liu-Ping ointment in combination with celecoxib via cyclooxygenase-2-mediated lung metastatic inflammatory micro-environment in Lewis lung carcinoma xenograft mouse model, J. Transl. Med.13 (2015) 366; https://doi.org/10.1186/s12967-015-0728-110.1186/s12967-015-0728-1465618426597177Search in Google Scholar

40. D. Capece, D. Verzella, A. Tessitore, E. Alesse, C. Capalbo and F. Zazzeroni, Cancer secretome and inflammation: The bright and the dark sides of NF-κB, Semin. Cell Dev. Bio.78 (2018) 51–61; https://doi.org/10.1016/j.semcdb.2017.08.00410.1016/j.semcdb.2017.08.00428779979Search in Google Scholar

41. M. Patel, P. G. Horgan, D. C. McMillan and J. Edwards, NF-κB pathways in the development and progression of colorectal cancer, Transl. Res.197 (2018) 43–56; https://doi.org/10.1016/j.trsl.2018.02.00210.1016/j.trsl.2018.02.00229550444Search in Google Scholar

42. M. Egue, F. H. R. Gnangnon, M. T. Akele-Akpo and D. M. Parkin, Cancer incidence in Cotonou (Benin), 2014–2016 First results from the cancer Registry of Cotonou, Cancer Epidemiol.59 (2019) 46–50; https://doi.org/10.1016/j.canep.2019.01.00610.1016/j.canep.2019.01.00630685574Search in Google Scholar

43. L. Su, Y. M. Jiang, Y. Xu, X. Y. Li, W. B. Gao, C. W. Xu, C. Q. Zeng, J. Song, W. C. Weng and W. B. Liang, Xihuang pill promotes apoptosis of Treg cells in the tumor microenvironment in 4T1 mouse breast cancer by upregulating MEKK1/SEK1/JNK1/AP-1 pathway, Biomed. Pharmacother.102 (2018) 1111–1119; https://doi.org/10.1016/j.biopha.2018.03.06310.1016/j.biopha.2018.03.06329710529Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo