1. bookVolumen 70 (2020): Edición 4 (December 2020)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Modulatory effects of perindopril on cisplatin-induced nephrotoxicity in mice: Implication of inflammatory cytokines and caspase-3 mediated apoptosis

Publicado en línea: 13 May 2020
Volumen & Edición: Volumen 70 (2020) - Edición 4 (December 2020)
Páginas: 515 - 525
Aceptado: 18 Nov 2019
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. S. Dasari and P. B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action, Eur. J. Pharmacol.740 (2014) 364–378; https://doi.org/10.1016/j.ejphar.2014.07.02510.1016/j.ejphar.2014.07.025Search in Google Scholar

2. I. Arany and R. L. Safirstein, Cisplatin nephrotoxicity, Semin. Nephrol.23 (2003) 460–464; https://doi.org/10.1016/S0270-9295(03)00089-510.1016/S0270-9295(03)00089-5Search in Google Scholar

3. A. Shiraishi, K. Sakumi and M. Sekiguchi, Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase, Carcinogenesis21 (2000) 1879–1883; https://doi.org/10.1093/carcin/21.10.187910.1093/carcin/21.10.187911023546Search in Google Scholar

4. N. Pabla and Z. Dong, Cisplatin nephrotoxicity: mechanisms and renoprotective strategies, Kidney Int.73 (2008) 994–1007; https://doi.org/10.1038/sj.ki.500278610.1038/sj.ki.500278618272962Search in Google Scholar

5. P. D. Sanchez-Gonzalez, F. J. Lopez-Hernandez, J. M. Lopez-Novoa and A. I. Morales, An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity, Crit. Rev. Toxicol.41 (2011) 803–821; https://doi.org/10.3109/10408444.2011.60266210.3109/10408444.2011.60266221838551Search in Google Scholar

6. G. Daugaard, U. Abildgaard, N. H. Holstein-Rathlou, I. Bruunshuus, D. Bucher and P. P. Leyssac, Renal tubular function in patients treated with high-dose cisplatin, Clin. Pharmacol. Ther.44 (1988) 164–172; https://doi.org/10.1038/clpt.1988.13210.1038/clpt.1988.1322840230Search in Google Scholar

7. A. M. Abdelrahman, Y. Al Suleimani, A. Shalaby, M. Ashique, P. Manoj, A. Nemmar and B. H. Ali, Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice, Naunyn. Schmiedebergs Arch. Pharmacol. (2018); https://doi.org/10.1007/s00210-018-1564-710.1007/s00210-018-1564-730206656Search in Google Scholar

8. G. J. Dugbartey, L. J. Peppone and I. A. de Graaf, An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures, Toxicology371 (2016) 58–66; https://doi.org/10.1016/j.tox.2016.10.00110.1016/j.tox.2016.10.001558659427717837Search in Google Scholar

9. C. N. Sharp and L. J. Siskind, Developing better mouse models to study cisplatin-induced kidney injury, Am. J. Physiol. Renal Physiol.313 (2017) F835-f841; https://doi.org/10.1152/ajprenal.00285.201710.1152/ajprenal.00285.2017566858228724610Search in Google Scholar

10. M. Hurst and B. Jarvis, Perindopril: an updated review of its use in hypertension, Drugs61 (2001) 867–896; https://doi.org/10.2165/00003495-200161060-0002010.2165/00003495-200161060-0002011398915Search in Google Scholar

11. P. A. Todd and A. Fitton, Perindopril. A review of its pharmacological properties and therapeutic use in cardiovascular disorders, Drugs42 (1991) 90–114; https://doi.org/10.2165/00003495-199142010-0000610.2165/00003495-199142010-000061718688Search in Google Scholar

12. E. M. de Cavanagh, F. Inserra and L. Ferder, Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria?, Cardiovasc Res.89 (2011) 31–40; https://doi.org/10.1093/cvr/cvq28510.1093/cvr/cvq28520819950Search in Google Scholar

13. E. A. M. El-Shoura, B. A. S. Messiha, S. M. Z. Sharkawi and R. A. M. Hemeida, Perindopril ameliorates lipopolysaccharide-induced brain injury through modulation of angiotensin-II/angiotensin-1-7 and related signaling pathways, Eur. J. Pharmacol.834 (2018) 305–317; https://doi.org/10.1016/j.ejphar.2018.07.04610.1016/j.ejphar.2018.07.04630059682Search in Google Scholar

14. N. E. Mohammed, B. A. Messiha and A. A. Abo-Saif, Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats, Saudi Pharm. J.24 (2016) 635–644; https://doi.org/10.1016/j.jsps.2015.04.00410.1016/j.jsps.2015.04.004509442927829805Search in Google Scholar

15. M. M. Abdel-Fattah, A. A. Salama, B. A. Shehata and I. E. Ismaiel, The potential effect of the angiotensin II receptor blocker telmisartan in regulating OVA-induced airway remodeling in experimental rats, Pharmacol. Rep.67 (2015) 943–951; https://doi.org/10.1016/j.pharep.2015.02.01010.1016/j.pharep.2015.02.01026398389Search in Google Scholar

16. M. G. Fahmy Wahba, B. A. Shehata Messiha and A. A. Abo-Saif, Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats, Eur. J. Pharmacol.765 (2015) 307–15; https://doi.org/10.1016/j.ejphar.2015.08.02610.1016/j.ejphar.2015.08.02626302059Search in Google Scholar

17. F. Barutta, S. Bellini, R. Mastrocola, R. Gambino, F. Piscitelli, V. di Marzo, B. Corbetta, V. K. Vemuri, A. Makriyannis, L. Annaratone, L. Annaratone, G. Bruno and G. Gruden, Reversal of albuminuria by combined AM6545 and perindopril therapy in experimental diabetic nephropathy, Br. J. Pharmacol.175 (2018) 4371–4385; https://doi.org/10.1111/bph.1449510.1111/bph.14495624013030184259Search in Google Scholar

18. X. M. Gao, A. Tsai, A. Al-Sharea, Y. Su, S. Moore, L. P. Han, H. Kiriazis, A. M. Dart, A. J. Murphy and X. J. Du, Inhibition of the renin-angiotensin system post myocardial infarction prevents inflammation-associated acute cardiac rupture, Cardiovasc. Drugs Ther.31 (2017) 145–156; https://doi.org/10.1007/s10557-017-6717-210.1007/s10557-017-6717-228204966Search in Google Scholar

19. K. K. Filipski, R. H. Mathijssen, T. S. Mikkelsen, A. H. Schinkel and A. Sparreboom, Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity, Clin. Pharmacol. Ther.86 (2009) 396–402; https://doi.org/10.1038/clpt.2009.13910.1038/clpt.2009.139274686619625999Search in Google Scholar

20. F. A. Suliman, D. M. Khodeer, A. Ibrahiem, E. T. Mehanna, M. K. El-Kherbetawy, H. M. F. Mohammad, S. A. Zaitone and Y. M. Moustafa, Renoprotective effect of the isoflavonoid biochanin A against cisplatin induced acute kidney injury in mice: Effect on inflammatory burden and p53 apoptosis, Int. Immunopharmacol.61 (2018) 8–19; https://doi.org/10.1016/j.intimp.2018.05.01010.1016/j.intimp.2018.05.01029793166Search in Google Scholar

21. A. S. Shalkami, M. I. A. Hassan and A. A. Abd El-Ghany, Perindopril regulates the inflammatory mediators, NF-kappaB/TNF-alpha/IL-6, and apoptosis in cisplatin-induced renal dysfunction, Naunyn. Schmiedebergs Arch. Pharmacol.391 (2018) 1247–1255; https://doi.org/10.1007/s00210-018-1550-010.1007/s00210-018-1550-030066022Search in Google Scholar

22. I. Rubera, C. Duranton, N. Melis, M. Cougnon, B. Mograbi and M. Tauc, Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity, Cell Death Dis.4 (2013) e817; https://doi.org/10.1038/cddis.2013.35510.1038/cddis.2013.355382466524091660Search in Google Scholar

23. H. Soni, D. Kaminski, R. Gangaraju and A. Adebiyi, Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding, Ren. Fail.40 (2018) 314–322; https://doi.org/10.1080/0886022x.2018.145693810.1080/0886022X.2018.1456938601430329619879Search in Google Scholar

24. R. Goel, S. A. Bhat, K. Hanif, C. Nath and R. Shukla, Perindopril attenuates lipopolysaccharideinduced amyloidogenesis and memory impairment by suppression of oxidative stress and RAGE activation, ACS Chem. Neurosci.7 (2016) 206–217; https://doi.org/10.1021/acschemneuro.5b0027410.1021/acschemneuro.5b0027426689453Search in Google Scholar

25. A. Dandekar, R. Mendez and K. Zhang, Cross talk between ER stress, oxidative stress, and inflammation in health and disease, Methods Mol. Biol.1292 (2015) 205–14; https://doi.org/10.1007/978-1-4939-2522-3_1510.1007/978-1-4939-2522-3_1525804758Search in Google Scholar

26. F. Sesti, O. E. Tsitsilonis, A. Kotsinas and I. P. Trougakos, Oxidative stress-mediated biomolecular damage and inflammation in tumorigenesis, In Vivo26 (2012) 395–402.Search in Google Scholar

27. K. Hasegawa, S. Wakino, K. Yoshioka, S. Tatematsu, Y. Hara, H. Minakuchi, N. Washida, H. Tokuyama, K. Hayashi and H. Itoh, Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression, Biochem. Biophys. Res. Commun.372 (2008) 51–56; https://doi.org/10.1016/j.bbrc.2008.04.17610.1016/j.bbrc.2008.04.17618485895Search in Google Scholar

28. M. H. Hassan, S. A. Bahashawan, T. M. Abdelghany, G. M. Abd-Allah and M. M. Ghobara, Crocin abrogates carbon tetrachloride-induced renal toxicity in rats via modulation of metabolizing enzymes and diminution of oxidative stress, apoptosis, and inflammatory cytokines, J. Biochem. Mol. Toxicol.29 (2015) 330–339; https://doi.org/10.1002/jbt.2170210.1002/jbt.2170225899501Search in Google Scholar

29. J. Y. Kim, J. H. Park, K. Kim, J. Jo, J. Leem and K. K. Park, Pharmacological inhibition of caspase-1 ameliorates cisplatin-induced nephrotoxicity through suppression of apoptosis, oxidative stress, and inflammation in mice, Mediators Inflamm.2018(2018) 6571676; https://doi.org/10.1155/2018/657167610.1155/2018/6571676632343830670928Search in Google Scholar

30. J. L. Martindale and N. J. Holbrook, Cellular response to oxidative stress: signaling for suicide and survival, J. Cell Physiol.192 (2002) 1–15; https://doi.org/10.1002/jcp.1011910.1002/jcp.1011912115731Search in Google Scholar

31. G. Nunez, M. A. Benedict, Y. Hu and N. Inohara, Caspases: the proteases of the apoptotic pathway, Oncogene17 (1998) 3237–3245; https://doi.org/10.1038/sj.onc.120258110.1038/sj.onc.12025819916986Search in Google Scholar

32. E. A. Slee, M. T. Harte, R. M. Kluck, B. B. Wolf, C. A. Casiano, D. D. Newmeyer, H. G. Wang, J. C. Reed, D. W. Nicholson, E. S. Alnemri, D. R. Green and S. J. Martin, Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner, J. Cell Biol.144 (1999) 281–292; https://doi.org/10.1083/jcb.144.2.28110.1083/jcb.144.2.28121328959922454Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo