1. bookVolumen 70 (2020): Edición 3 (September 2020)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses

Publicado en línea: 17 Feb 2020
Volumen & Edición: Volumen 70 (2020) - Edición 3 (September 2020)
Páginas: 259 - 290
Aceptado: 24 Oct 2019
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Y. Li, J. Geng, Y. Liu, S. Yu and G. Zhao, Thiadiazole – a promising structure in medicinal chemistry, ChemMedChem8 (2013) 27–41; https://doi.org/10.1002/cmdc.20120035510.1002/cmdc.20120035523208773Search in Google Scholar

2. T. L. Lemke, Antiparasitic Agents, in Foye’s Principles of Medicinal Chemistry (Eds. T. L. Lemke, D. A. Williams, V. F. Roche and S. W. Zito), 7th ed., Lippincott Williams and Wilkins, Baltimore 2013, pp.1126.Search in Google Scholar

3. World Health Organization, Neglected Tropical Diseases. Prevention, Control, Elimination and Eradication, Sixty-six world health assembly A66/20, Provisional agenda item 16.2, 15 March 2013; https://www.who.int/neglected_diseases/A66_20_Eng.pdf; last access date: March 27, 2019Search in Google Scholar

4. P. J. Hotez, The Neglected Tropical Diseases and the Neglected Infections of Poverty: Overview of Their Common Features, Global Disease Burden and Distribution, New Control Tools, and Prospects for Disease Elimination, in Institute of Medicine (US) Forum on Microbial Threats. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies, National Academies Press, Washington (DC) 2011, A7; last access date March 27, 2019Search in Google Scholar

5. D. Molyneux, Neglected tropical diseases, Community Eye Health J. 26 (2013) 21–24.Search in Google Scholar

6. T. Furst, P. Salari, L. M. Llamas, P. Steinmann, C. Fitzpatrick and F. Tediosi, Global health policy and neglected tropical diseases: then, now and in the years to come, PLoS Negl. Trop. Dis. 11 (2017) e0005759; https://doi.org/10.1371/journal.pntd.000575910.1371/journal.pntd.0005759559892828910281Search in Google Scholar

7. F. Pourrajab, S. K. Forouzannia and S. A. Tabatabaee, Novel immunomodulatory function of 1,3,4-thiadiazole derivatives with leishmanicidal activity, J. Antimicrob. Chemother.67 (2012) 1968–1978; https://doi.org/10.1093/jac/dks14410.1093/jac/dks14422581907Search in Google Scholar

8. J. A. Joule, Natural Products Containing Nitrogen Heterocycles – Some Highlights 1990-2015, in Advances in Heterocyclic Chemistry: Heterocyclic Chemistry in the 21st Century – A Tribute to Alan Katritzky (Eds. E. F. V. Scriven and C. A. Ramsden), 1st ed., Academic Press, Cambridge (MA) 2016, Vol. 119, pp. 81–106.10.1016/bs.aihch.2015.10.005Search in Google Scholar

9. S. B. A. M. W. Van den Broek, S. A. Meeuwissen, F. L. van Delft and F. P. J. T. Rutjes, Natural Products Containing Medium-Sized Nitrogen Heterocycles Synthesized by Ring-Closing Alkene Metathesis, in Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts (Eds. J. Cossy, S. Arseniyadis and C. Meyer), Wiley-VCH, Weinheim 2010, pp. 45–85.10.1002/9783527629626.ch2Search in Google Scholar

10. F. Diaba, J. A.Montiel, G. Serban and J. Bonjoch, Synthesis of normorphans through an efficient intramolecular carbamoylation of ketones, Org. Lett.17 (2015) 3860–3863; https://doi.org/10.1021/acs.orglett.5b0183210.1021/acs.orglett.5b0183226197207Search in Google Scholar

11. G. Serban, H. Abe and Y. Takeuchi, Synthetic studies of substituted pyridine aldehydes as intermediates for the synthesis of toddaquinoline, its derivatives and other natural products, Heterocycles83 (2011) 1989–2000; https://doi.org/10.3987/COM-11-1223910.3987/COM-11-12239Search in Google Scholar

12. G. Serban, H. Abe, Y. Takeuchi and T. Harayama, A new approach to the benzopyridoxepine core by metal mediated intramolecular biaryl ether formation, Heterocycles75 (2008) 2949–2958; https://doi.org/10.3987/COM-08-1144310.3987/COM-08-11443Search in Google Scholar

13. G. Serban, Y. Shigeta, H. Nishioka, H. Abe, Y. Takeuchi and T. Harayama, Studies toward the synthesis of toddaquinoline by intramolecular cyclization, Heterocycles71 (2007) 1623–1630; https://doi.org/10.3987/COM-07-1106210.3987/COM-07-11062Search in Google Scholar

14. D. Sole, F. Diaba and J. Bonjoch, Nitrogen heterocycles by palladium-catalyzed cyclization of amino-tethered vinyl halides and ketone enolates, J. Org. Chem.68 (2003) 5746–5749; https://doi.org/10.1021/jo034299q10.1021/jo034299q12839475Search in Google Scholar

15. B. Bradshaw, C. Parra and J. Bonjoch, Organocatalyzed asymmetric synthesis of morphans, Org. Lett.15 (2013) 2458–2461; https://doi.org/10.1021/ol400926p10.1021/ol400926p23627688Search in Google Scholar

16. P. K. Shukla, A. Verma and P. Mishra, Significance of Nitrogen Heterocyclic Nuclei in the Search of Pharmacological Active Compounds, in New Perspective in Agricultural and Human Health (Eds. R. P. Shukla, R. S. Mishra, A. D. Tripathi, A. K. Yadav, M. Tiwari and R. R. Mishra), Bharti Publication, New Delhi 2017, pp. 100–126.Search in Google Scholar

17. P. Martins, J. Jesus, S. Santos, L. R. Raposo, C. Roma-Rodrigues, P. V. Baptista and A. R. Fernandes, Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box, Molecules20 (2015) 16852–16891; https://doi.org/10.3390/molecules20091685210.3390/molecules200916852633190026389876Search in Google Scholar

18. The Top 200 Drugs of 2019; https://clincalc.com/DrugStats/Top200Drugs.aspx; last access date March 29, 2019Search in Google Scholar

19. A. V. Fuentes, M. D. Pineda and K. C. N. Venkata, Comprehension of top 200 prescribed drugs in the US as a resource for pharmacy teaching, training and practice, Pharmacy6 (2018) 43–52; https://doi.org/10.3390/pharmacy602004310.3390/pharmacy6020043602500929757930Search in Google Scholar

20. Antiparasitic Drugs (Antiprotozoal Drugs, Nitazoxanide and Ivermectin); https://www.tm.mahidol.ac.th/pediatrics/?q=Antiparasitic-drugs; last access date July 12, 2019Search in Google Scholar

21. J. Keiser, K. Ingram and J. Utzinger, Antiparasitic drugs for paediatrics: systemic review, formulations, pharmacokinetcs, safety, efficacy and implications for control, Parasitology138 (2011) 1620–1632; https://doi.org/10.1017/S003118201100002310.1017/S003118201100002321349223Search in Google Scholar

22. F. Castelli, L. R. Tomasoni and A. Matteelli, Advances in treatment of malaria, Mediterr. J. Hematol. Infect. Dis.4 (2012) e2012064;https://doi.org/10.4084/MJHID.2012.06410.4084/mjhid.2012.064Search in Google Scholar

23. S. Rajapakse, P. Weeratunga, C. Rodrigo, N. L. de Silva and S. D. Fernando, Prophylaxis of human toxoplasmosis: a systematic review, Pathog. Glob. Health111 (2017) 333–342; https://doi.org/10.1080/20477724.2017.137052810.1080/20477724.2017.1370528569488628948861Search in Google Scholar

24. M. Yoosefian, Z. J. Chermahini, H. Raissi, A. Mola and M. Sadeghi, A theoretical study on the structure of 2-amino-1,3,4-thiadiazole and its 5-substituted derivatives in the gas phase, water, THF and DMSO solutions, J. Mol. Liq.203 (2015) 137–142; https://doi.org/10.1016/j.molliq.2015.01.00210.1016/j.molliq.2015.01.002Search in Google Scholar

25. K. M. Dawood and T. A. Farghaly, Thiadiazole inhibitors: a patent review, Expert Opin. Ther. Pat.27 (2017) 477–505; https://doi.org/10.1080/13543776.2017.127257510.1080/13543776.2017.127257527976971Search in Google Scholar

26. S. Haider, M. S. Alam and H. Hamid, 1,3,4-Thiadiazoles: a potent multi targeted pharmacological scaffold, Eur. J. Med. Chem.92 (2015) 156–177; https://doi.org/10.1016/j.ejmech.2014.12.03510.1016/j.ejmech.2014.12.03525553540Search in Google Scholar

27. G. Serban, O. Stanasel, E. Serban and S. Bota, 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents, Drug Des. Devel. Ther.12 (2018) 1545–1566; https://doi.org/10.2147/DDDT.S15595810.2147/DDDT.S155958598778729910602Search in Google Scholar

28. M. G. Yang, T. G. M. Dhar, Z. Xiao, H. Y. Xiao, J. J. W. Duan, B. Jiang, M. A. Galella, M. Cunningham, J. Wang, S. Habte, D. Shuster, K. W. McIntyre, J. Carman, D. A. Holloway, J. E. Somerville, S. G. Nadler, L. Salter-Cid, J. C. Barrish and D. S. Weinstein, Improving the pharmacokinetic and CYP inhibition profiles of azaxanthene-based glucocorticoid receptor modulators – Identification of (S)-5-(2-(9-fluoro-2-(4-(2-hydroxypropan-2-yl)phenyl)-5H-chromeno[2,3-b]pyridin-5-yl)-2-methylpropan amido)-N-(tetrahydro-2H-pyran-4-yl)-1,3,4-thiadiazole-2-carboxamide (BMS-341), J. Med. Chem.58 (2015) 4278–4290; https://doi.org/10.1021/acs.jmedchem.5b0025710.1021/acs.jmedchem.5b00257Search in Google Scholar

29. Y. J. Wu, Five-membered ring systems: with N and S atom, in Progress in Heterocyclic Chemistry (Eds. G. W. Gribble and J. A. Joule), Elsevier, Amsterdam 2017, Vol. 29, pp. 315–335.10.1016/B978-0-08-102310-5.00009-6Search in Google Scholar

30. R. Sink, I. Sosic, M. Zivec, R. Fernandez-Menendez, S. Turk, S. Pajk, D. Alvarez-Gomez, E. M. Lopez-Roman, C. Gonzales-Cortez, J. Rullas-Triconado, I. Angulo-Barturen, D. Barros, L. Ballell-Pages, R. J. Young, L. Encinas and S. Gobec, Design, synthesis and evaluation of new thiadiazole based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis, J. Med. Chem.58 (2015) 613–624;https://doi.org/10.1021/jm501029r10.1021/jm501029rSearch in Google Scholar

31. F. Hipler, M. Winter and R. A. Fischer, N-HS hydrogen bonding in 2-mercapto-5-methyl-1,3,4-thiadiazole. Synthesis and crystal structures of mercapto functionalized 1,3,4-thiadiazoles, J. Mol. Struct.658 (2003) 179–191; https://doi.org/10.1016/S0022-2860(03)00386-710.1016/S0022-2860(03)00386-7Search in Google Scholar

32. Y. Hu, C. Y. Li, X. M. Wang, Y. H. Yang and H. L. Zhu, 1,3,4-Thiadiazole: synthesis, reactions and applications in medicinal, agricultural, and materials chemistry, Chem. Rev.114 (2014) 5572–5610; https://doi.org/10.1021/cr400131u10.1021/cr400131u24716666Search in Google Scholar

33. A. T. Balaban, D. C. Oniciu and A. R. Katritzky, Aromaticity as a cornerstone of heterocyclic chemistry, Chem. Rev.104 (2004) 2777–2812;https://doi.org/10.1021/cr030679010.1021/cr030679015137807Search in Google Scholar

34. G. Kornis, Five-membered Rings with More than Two Heteroatoms and Fused Carbocyclic Derivatives, in Comprehensive Heterocyclic Chemistry II (Eds. A. R. Katritzky, C. W. Rees and E. F. V. Scriven), Elsevier, Oxford 1996, Volume 4, pp. 379–408.Search in Google Scholar

35. A. Senff-Ribeiro, A. Echevarria, E. F. Silva, C. R. C. Franco, S. S. Veiga and M. B. M. Oliveira, Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human mellanoma, Br. J. Cancer91 (2004) 297–304; https://doi.org/10.1038/sj.bjc.660194610.1038/sj.bjc.6601946240979915199390Search in Google Scholar

36. M. M. Ciotti, S. R. Humphreys, J. M. Venditti, N. O. Kaplan and A. Goldin, The antileukemic action of two thiadiazole derivatives, Cancer Res.20 (1960) 1195–1201.Search in Google Scholar

37. M. Juszczak, J. Matysiak, W. Brzana, A. Niewiadomy and W. Rzeski, Evaluation of antiproliferative activity of 2-(monohalogenophenylamino)-5-(2, 4-dihydroxyphenyl)-1,3,4-thiadiazoles, Arzneim. Forsch. Drug Res.58 (2008) 353–357; https://doi.org/10.1055/s-0031-129651910.1055/s-0031-129651918751502Search in Google Scholar

38. J. Matysiak, Evaluation of antiproliferative effect in vitro of some 2-amino-5-(2, 4-dihydroxyphenyl)-1,3,4-thiadiazole derivatives, Chem. Pharm. Bull.54 (2006) 988–991; https://doi.org/10.1248/cpb.54.98810.1248/cpb.54.98816819217Search in Google Scholar

39. J. Matysiak and A. Opolski, Synthesis and antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles, Bioorg. Med. Chem.14 (2006) 4483–4489; https://doi.org/10.1016/j.bmc.2006.02.02710.1016/j.bmc.2006.02.02716517170Search in Google Scholar

40. W. Rzeski, J. Matysiak and M. Kandefer-Szerszen, Anticancer, neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound, Bioorg. Med.Chem.15 (2007) 3201–3207; https://doi.org/10.1016/j.bmc.2007.02.04110.1016/j.bmc.2007.02.041Search in Google Scholar

41. R. Asbury, J. A. Blessing and D. Moore, A phase II trial of aminothiadiazole in patients with mixed mesodermal tumors of the uterine corpus: a gynecologic oncology group study, Am. J. Clin. Oncol.19 (1996) 400–402.Search in Google Scholar

42. P. L. Elson, L. K. Kvols, S. E. Vogl, D. J. Glover, R. G. Hahn and D. L. Trump, Phase II trials of 5-day vinblastine infusion (NSC 49842), L-alanosine (NSC153353), acivicin (NSC 163501), and aminothiadiazole (NSC 4728) in patients with recurrent or metastatic renal cell carcinoma, Invest. New Drugs6 (1988) 97–103.10.1007/BF00195367Search in Google Scholar

43. P. F. Engstrom, L. M. Ryan, G. Falkson and D. G. Haller, Phase II study of aminothiadiazole in advanced squamous cell carcinoma of the esophagus, Am. J. Clin. Oncol.14 (1991) 33–35.10.1097/00000421-199102000-00007Search in Google Scholar

44. G. Y. Locker, L. Kilton, J. D. Khandekar, T. E. Lad, R. H. Knop, K. Albain, R. Blough, S. French and A. B. Benson, High-dose aminothiadiazole in advanced colorectal cancer. An Illinois Cancer Center phase II trial, Invest. New Drugs12 (1994) 299–301.10.1007/BF00873044Search in Google Scholar

45. I. H. Krakoff, Purine metabolism in the chick embryo: influence of 2-substituted thiadiazoles, Biochem. Pharmacol. 13 (1964) 449–459; https://doi.org/10.1016/0006-2952(64)90165-010.1016/0006-2952(64)90165-0Search in Google Scholar

46. H. F. Oettgen, J. A. Reppert, V. Coley and J. H. Burchenal, Effects of nicotinamide and related compounds on the antileukemic activity of 2-amino-1,3,4-thiadiazole, Cancer Res. 20 (1960) 1597–1601.Search in Google Scholar

47. D. M. Shapiro, M. E. Shils, R. A. Fugmann andI. M. Friedland, Quantitative biochemical differences between tumor and host as a basis for cancer chemotherapy IV. Niacin and 2-ethylamino-1,3,4-thiadiazole, Cancer Res. 17 (1957) 29–33.Search in Google Scholar

48. G. Serban, Future prospects in the treatment of parasitic diseases: 2-amino-1,3,4-thiadiazoles in leishmaniasis, Molecules24 (2019) 1557–1578; https://doi.org/10.3390/molecules2408155710.3390/molecules24081557651467331010226Search in Google Scholar

49. G. Serban, 5-Arylamino-1,3,4-thiadiazol-2-yl acetic acid esters as intermediates for the synthesis of new bisheterocyclic compounds, Farmacia63 (2015) 146–149.Search in Google Scholar

50. T. Horvath, G. Serban and S. Cuc, Synthesis of new 2-phenylamino-5-[(α-acylamino)-p-X-stiryl]-1,3,4-thiadiazole compounds, Farmacia62 (2014) 422–427.Search in Google Scholar

51. G. Serban, A. Suciu, M. Coman and E. Curea, Synthesis and physical-chemical study of some 3-(5-arylamino-1,3,4-thiadiazol-2-yl)coumarins, Farmacia50 (2002) 50–54.Search in Google Scholar

52. G. Serban, M. Coman and E. Curea, Synthesis of some heterocyclic nitrocoumarins by Knoevenagel condensation, Farmacia53 (2005) 78–84.Search in Google Scholar

53. G. Serban, D. Matinca, O. Bradea, L. Gherman, M. Coman and E. Curea, The study of the biological activity of some heterocyclic coumarins, Farmacia53 (2005) 91–99.Search in Google Scholar

54. G. Serban, M. Coman, E. Curea and L. Proinov, Synthesis and description of some heterocyclic coumarins, Farmacia49 (2001) 45–52.Search in Google Scholar

55. World Health Organization, Integrating Neglected Tropical Diseases Into Global Health and Development: Fourth WHO Report on Neglected Tropical Diseases, WHO, Geneva, 19 April 2017, licence: CC BY-NC-SA 3.0 IGO; https://apps.who.int/iris/bitstream/handle/10665/255011/9789241565448-eng.pdf;jsessionid=9AA10810B00430B8A67751281F4AEFDD?sequence=1; last access date March 27, 2019Search in Google Scholar

56. World Health Organization, WHO Dept. of Control of Neglected Tropical Diseases, Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases, WHO Press, Geneva 2010; https://apps.who.int/iris/bitstream/handle/10665/44440/9789241564090_eng.pdf;jsessionid=FADC468AEF33A190CEC5CAB713DAAB9F?sequence=1; last access date September 25, 2017Search in Google Scholar

57. J. A. Chandler and P. M. James, Discovery of trypanosomatid parasites in globally distributed Drosophila species, PLoS ONE8 (2013) e61937; https://doi.org/10.1371/journal.pone.006193710.1371/journal.pone.0061937363921523658617Search in Google Scholar

58. P. Linciano, A. Dawson, I. Poohner, D. M. Costa, M. S. Sa, A. Cordeiro-da-Silva, R. Luciani, S. Gul, G. Witt, B. Ellinger, M. Kuzikov, P. Gribbon, J. Reinshagen, M. Wolf, B. Behrens, V. Hannaert, P. A. M. Michels, E. Nerini, C. Pozzi, F. di Pisa, G. Landi, N. Santarem, S. Ferrari, P. Saxena, S. Lazzari, G. Cannazza, L. H. Freitas-Junior, C. B. Moraes, B. S. Pascoalino, L. M. Alcantara, C. P. Bertolacini, V. Fontana, U. Wittig, W. Muller, R. C. Wade, W. N. Hunter, S. Mangani, L. Costantino and M. P. Costi, Exploiting the 2-amino-1,3,4-thiadiazole scaffold to inhibit Trypanosoma brucei pteridine reductase in support of early-stage drug discovery, ACS Omega2 (2017) 5666−5683; https://doi.org/10.1021/acsomega.7b0047310.1021/acsomega.7b00473562394928983525Search in Google Scholar

59. K. T. Andrews, G. Fisher and T. S. Skinner-Adams, Drug repurposing and human parasitic protozoan diseases, Int. J. Parasitol. Drugs Drug Resist.4 (2014) 95–111; https://doi.org/10.1016/j.ijpddr.2014.02.00210.1016/j.ijpddr.2014.02.002409505325057459Search in Google Scholar

60. World Health Organization, Neglected Tropical Diseases; http://www.who.int/neglected_diseases/diseases/en/; last access date July 21, 2018Search in Google Scholar

61. S. Patterson and S. Wyllie, Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects, Trend Parasitol.30 (2014) 289–298; https://doi.org/10.1016/j.pt.2014.04.00310.1016/j.pt.2014.04.003404520624776300Search in Google Scholar

62. World Health Organization, Chagas Disease in the Americas: A Review of the Current Public Health Situation and a Vision for the Future. Report: Conclusions and Recommendations, Washington, D.C., 3-4 May 2018; https://www.paho.org/hq/index.php?option=com_content&view=article&id=14399:enfermedad-chagas-en-americas-revision-de-situacion-vision-futuro&Itemid=72315&lang=en; last access date July 17, 2018Search in Google Scholar

63. C. J. Schofield and J. P. Kabayo, Trypanosomiasis vector control in Africa and Latin America, Parasit. Vectors1 (2008) Article ID 24 (7 pages); https://doi.org/10.1186/1756-3305-1-2410.1186/1756-3305-1-24Search in Google Scholar

64. A. K. Jain, S. Sharma, A. Vaidya, V. Ravichandran and R. K. Agrawal, 1,3,4-Thiadiazole and its derivatives: a review on recent progress in biological activities, Chem. Biol. Drug Des.81 (2013) 557–576; https://doi.org/10.1111/cbdd.1212510.1111/cbdd.12125Search in Google Scholar

65. S. Tomlinson, F. Vandekerckhove, U. Frevert and V. Nussenzweig, The induction of Trypanosoma cruzi trypomastigote transformation by low pH, Parasitology110 (1995) 547–554; https://doi.org/10.1017/S003118200006526410.1017/S0031182000065264Search in Google Scholar

66. A. S. Nagle, S. Khare, A. B. Kumar, F. Supek, A. Buchynskyy, C. J. N. Mathison, N. K. Chennamaneni, N. Pendem, F. S. Buckner, M. H. Gelb and V. Molteni, Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis, Chem. Rev.114 (2014) 11305–11347; https://doi.org/10.1021/cr500365f10.1021/cr500365fSearch in Google Scholar

67. Centers for Disease Control and Prevention, Parasites, African trypanosomiasis; https://www.cdc.gov/parasites/sleepingsickness/biology.html; last access date May 9, 2019Search in Google Scholar

68. Parasites in humans, Trypanosoma brucei – sleeping sickness; http://www.parasitesinhumans.org/trypanosoma-brucei-sleeping-sickness.html; last access date May 9, 2019Search in Google Scholar

69. World Health Organization, Human African Trypanosomiasis, Symptoms, Diagnosis and Treatment; http://www.who.int/trypanosomiasis_african/disease/diagnosis/en/; last access date November 1st, 2018Search in Google Scholar

70. World Health Organization, Trypanosomiasis; http://www.who.int/ith/diseases/trypanosomiasis/en/; last access date November 1, 2018Search in Google Scholar

71. World Health Organization, Chagas Disease (American Trypanosomiasis), 1 February 2018; http://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis); last access date July 24, 2018Search in Google Scholar

72. World Health Organization, Chagas Disease: Control and Elimination, Sixty-third World Health Assembly, 22 April 2010; http://apps.who.int/gb/ebwha/pdf_files/WHA63/A63_17-en.pdf; last access date November 1, 2018Search in Google Scholar

73. S. Pund and A. Joshi, Nanoarchitectures for Neglected Tropical Diseases: Challenges and State of the Art, in Nano- and Microscale Drug Delivery Systems: Design and Fabrication (Ed. A. M. Grumezescu), 1st ed., Elsevier, Amsterdam 2017, pp. 449.10.1016/B978-0-323-52727-9.00023-6Search in Google Scholar

74. J. D. Maya, S. Bollo, L. J. Nunez-Vergara, J. A. Squella, Y. Repetto, A. Morello, J. Perie and G. Chauviere, Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives, Biochem. Pharmacol.65 (2003) 999–1006; https://doi.org/10.1016/S0006-2952(02)01663-510.1016/S0006-2952(02)01663-5Search in Google Scholar

75. A. Silva de Carvalho, K. Salomao, S. Lisboa de Castro, T. R. Conde, H. P. da Silva Zamith, E. R. Caffarena, B. S. Hall, S. R. Wilkinson and N. Boechat, Megazol and its bioisostere 4H-1,2,4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme, Mem. Inst. Oswaldo Cruz109 (2014) 315–323; https://doi.org/10.1590/0074-027614049710.1590/0074-0276140497Search in Google Scholar

76. B. Bouteille, A. Marie-Daragon, G. Chauviere, C. de Albuquerque, B. Enanga, M. L. Darde, J. M. Vallat, J. Perie and M. Dumas, Effect of megazol on Trypanosoma brucei brucei acute and subacute infections in Swiss mice, Acta Tropica60 (1995) 73–80; https://doi.org/10.1016/0001-706X(95)00109-R10.1016/0001-706X(95)00109-RSearch in Google Scholar

77. G. Chauviere, B. Bouteille, B. Enanga, C. de Albuquerque, S. L. Croft, M. Dumas and J. Perie, Synthesis and biological activity of nitro heterocycles analogous to megazol, a trypanocidal lead, J. Med. Chem.46 (2003) 427–440; https://doi.org/10.1021/jm021030a10.1021/jm021030a12540242Search in Google Scholar

78. S. R. Wilkinson and J. M. Kelly, Trypanocidal drugs: mechanisms, resistance and new targets, Expert Rev. Mol. Med.11 (2009) e31; https://doi.org/10.1017/S146239940900125210.1017/S146239940900125219863838Search in Google Scholar

79. B. Enanga, M. R. Ariyanayagam, M. L. Stewart and M. P. Barrett, Activity of megazol, a trypanocidal nitroimidazole, is associated with DNA damage, Antimicrob. Agents Chemother.47 (2003) 3368–3370; https://doi.org/10.1128/AAC.47.10.3368-3370.200310.1128/AAC.47.10.3368-3370.200320114514506061Search in Google Scholar

80. H. B. Leites, F. S. Damasceno, A. M. Silber, R. Z. Mendonca and C. N. Albuquerque, Synthesis and evaluation of trypanosomicidal activity of new derivatives of megazol, Pharm. Biol. Eval.5 (2018) 40–51.10.26510/2394-0859.pbe.2018.05Search in Google Scholar

81. T. J. Vickers and S. M. Beverley, Folate metabolic pathways in Leishmania, Essays Biochem.51 (2011) 63–80; https://doi.org/10.1042/bse051006310.1042/bse0510063327821422023442Search in Google Scholar

82. N. Sienkiewicz, H. B. Ong and A. H. Fairlamb, Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice, Mol. Microbiol.77 (2010) 658–671; https://doi.org/10.1111/j.1365-2958.2010.07236.x10.1111/j.1365-2958.2010.07236.x291622220545846Search in Google Scholar

83. H. B. Ong, N. Sienkiewicz, S. Wyllie and A. H. Fairlamb, Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma bruceiand Leishmania major, J. Biol. Chem.286 (2011) 10429–10438; https://doi.org/10.1074/jbc.M110.20959310.1074/jbc.M110.209593306049621239486Search in Google Scholar

84. S. Ferrari, F. Morandi, D. Motiejunas, E. Nerini, S. Henrich, R. Luciani, A. Venturelli, S. Lazzari, S. Calo, S. Gupta, V. Hannaert, P. A. M. Michels, R. C. Wade and M. P. Costi, Virtual screening identification of nonfolate compounds, including a CNS drug, as antiparasitic agents inhibiting pteridine reductase, J. Med. Chem.54 (2011) 211–221; https://doi.org/10.1021/jm101057210.1021/jm101057221126022Search in Google Scholar

85. A. Dawson, F. Gibellini, N. Sienkiewicz, L. B. Tulloch, P. K. Fyfe, K. McLuskey, A. H. Fairlamb and W. N. Hunter, Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate, Mol. Microbiol.61 (2006) 1457–1468; https://doi.org/10.1111/j.1365-2958.2006.05332.x10.1111/j.1365-2958.2006.05332.x161873316968221Search in Google Scholar

86. D. Spinks, H. B. Ong, C. P. Mpamhanga, E. J. Shanks, D. A. Robinson, I. T. Collie, K. D. Read, J. A. Frearson, P. G. Wyatt, R. Brenk, A. H. Fairlamb and I. H. Gilbert, Design, synthesis and biological evaluation of novel inhibitors of Trypanosoma brucei pteridine reductase 1, Chem. Med. Chem.6 (2011) 302–308; https://doi.org/10.1002/cmdc.20100045010.1002/cmdc.201000450304771021275054Search in Google Scholar

87. B. Nare, J. Luba, L. W. Hardy and S. Beverley, New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity, Parasitology114 (1997) S101–S110.10.1017/S0031182097001133Search in Google Scholar

88. A. Cavazzuti, G. Paglietti, W. N. Hunter, F. Gamarro, S. Piras, M. Loriga, S. Allecca, P. Corona, K. McLuskey, L. Tulloch, F. Gibellini, S. Ferrari and M. P. Costi, Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development, Proc. Natl. Acad. Sci. USA105 (2008) 1448–1453; https://doi.org/10.1073/pnas.070438410510.1073/pnas.0704384105223416418245389Search in Google Scholar

89. R. F. Rodrigues, D. Castro-Pinto, A. Echevarria, C. M. dos Reis, C. N. Del Cistia, C. M. R. Sant’Anna, F. Teixeira, H. Castro, M. Canto-Cavalheiro, L. L. Leon and A. Tomas, Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies, Bioorg. Med. Chem.20 (2012) 1760–1766; https://doi.org/10.1016/j.bmc.2012.01.00910.1016/j.bmc.2012.01.00922304847Search in Google Scholar

90. G. Colotti, P. Baiocco, A. Fiorillo, A. Boffi, E. Poser, F. Di Chiaro and A. Ilari, Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs, Future Med. Chem. 5 (2013) 1861–1875; https://doi.org/10.4155/fmc.13.14610.4155/fmc.13.14624144416Search in Google Scholar

91. M. O. F. Khan, Trypanothione reductase: A viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design, Drug Target Insights2 (2007) 129–146; https://doi.org/10.1177/11773928070020000710.1177/117739280700200007Search in Google Scholar

92. D. Benítez, A. Medeiros, L. Fiestas, E. A. Panozzo-Zenere, F. Maiwald, K. C. Prousis, M. Roussaki, T. Calogeropoulou, A. Detsi, T. Jaeger, J. Šarlauskas, L. P. Mašič, C. Kunick, G. R. Labadie, L. Flohé and M. A. Comini, Identification of novel chemical scaffolds inhibiting trypanothione synthetase from pathogenic trypanosomatids, PLoS Negl. Trop. Dis.10 (2016) e0004617 (25 pages); https://doi.org/10.1371/journal.pntd.000461710.1371/journal.pntd.0004617482923327070550Search in Google Scholar

93. A. Ilari, A. Fiorillo, I. Genovese and G. Colotti, An update on structural insights into the enzymes of the polyamine-trypanothione pathway: targets for new drugs against leishmaniasis, Future Med. Chem.9 (2017) 61–77; https://doi.org/10.4155/fmc-2016-018010.4155/fmc-2016-018027957878Search in Google Scholar

94. V. Olin-Sandoval, Z. Gonzalez-Chavez, M. Berzunza-Cruz, I. Martinez, R. Jasso-Chavez, I. Becker, B. Espinoza, R. Moreno-Sanchez and E. Saavedra, Drug target validation of the trypanothione pathway enzymes through metabolic modeling, FEBS J.279 (2012) 1811–1833; https://doi.org/10.1111/j.1742-4658.2012.08557.x10.1111/j.1742-4658.2012.08557.x22394478Search in Google Scholar

95. R. F. Rodrigues, E. F. da Silva, A. Echevarria, R. Fajardo-Bonin, V. F. Amaral, L. L. Leon and M. Canto-Cavalheiro, A comparative study of mesoionic compounds in Leishmania sp. and toxicity evaluation, Eur. J. Med. Chem. 42 (2007) 1039–1043; https://doi.org/10.1016/j.ejmech.2006.12.02610.1016/j.ejmech.2006.12.02617367894Search in Google Scholar

96. R. F. Rodrigues, K. S. Charret, E. F. da Silva, A. Echevarria, V. F. Amaral, L. L. Leon and M. Canto-Cavalheiro, Antileishmanial activity of 1,3,4-thiadiazolium-2-aminide in mice infected with Leishmania amazonensis, Antimicrob. Agents Chemother. 53 (2009) 839–842; https://doi.org/10.1128/AAC.00062-0810.1128/AAC.00062-08263063319015338Search in Google Scholar

97. D. Spinks, L. S. Torrie, S. Thompson, J. R. Harrison, J. A. Frearson, K. D. Read, A. H. Fairlamb, P. G. Wyatt and I. H. Gilbert, Design, synthesis and biological evaluation of Trypanosoma brucei trypanothione synthetase inhibitors, Chem. Med. Chem.7 (2012) 95–106; https://doi.org/10.1002/cmdc.20110042010.1002/cmdc.201100420332066322162199Search in Google Scholar

98. A. F. Sousa, A. G. Gomes-Alves, D. Benitez, M. A. Comini, L. Flohe, T. Jaeger, J. Passos, F. Stuhlmann, A. M. Tomas and H. Castro, Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantu, Free Radic. Biol. Med.73 (2014) 229–238; https://doi.org/10.1016/j.freeradbiomed.2014.05.00710.1016/j.freeradbiomed.2014.05.00724853758Search in Google Scholar

99. P. K. Fyfe, S. L. Oza, A. H. Fairlamb and W. N. Hunter, Leishmania trypanothione synthetaseamidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities, J. Biol. Chem.283 (2008) 17672–17680; https://doi.org/10.1074/jbc.M80185020010.1074/jbc.M801850200242736718420578Search in Google Scholar

100. W. da Silva Ferreira, L. Freire-de-Lima, V. Barbosa Saraiva, F. Alisson-Silva, L. Mendonca-Previato, J. O. Previato, A. Echevarria and M. E. Freire de Lima, Novel 1,3,4-thiadiazolium-2-phenylamine chlorides derived from natural piperine as trypanocidal agents: chemical and biological studies, Bioorg. Med. Chem.16 (2008) 2984–2991; https://doi.org/10.1016/j.bmc.2007.12.04910.1016/j.bmc.2007.12.04918226906Search in Google Scholar

101. A. Tahghighi and F. Babalouei, Thiadiazoles: the appropriate pharmacological scaffolds with leishmanicidal and antimalarial activities: a review, Iran. J. Basic Med. Sci.20 (2017) 613–622; https://doi.org/10.22038/IJBMS.2017.8828Search in Google Scholar

102. World Health Organization, World Malaria Report 2018, World Health Organization, Geneva 2018, Licence: CC BY-NC-SA 3.0 IGO, ISBN 978-92-4-156565-3; https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf; last access date November 29, 2018Search in Google Scholar

103. World Health Organization, Malaria Vaccine: WHO Position Paper – January 2016, Weekly Epidemiological Record91 (2016) 33–52; https://www.who.int/wer; last access date June 8, 2019Search in Google Scholar

104. World Health Organization, Malaria, 19 November 2018; http://www.who.int/en/news-room/fact-sheets/detail/malaria; last access date November 29, 2018Search in Google Scholar

105. World Health Organization, First Malaria Vaccine in Africa: A Potential New Tool for Child Health and Improved Malaria Control, WHO/CDS/GMP/2018.05; https://www.who.int/malaria/publications/atoz/first-malaria-vaccine/en/; last access date June 8, 2019Search in Google Scholar

106. World Health Organization, Short Overview of the Malaria Vaccine Implementation Programme, April 2019; https://www.who.int/malaria/media/malaria-vaccine-overview/en/; last access date June 8, 2019Search in Google Scholar

107. L. Foquet, C. Hermsen, G. J. van Gemert, E. Van Braeckel, K. Weening, R. Sauerwein, P. Meuleman and G. Leroux-Roels, Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection, J. Clin. Invest.124 (2014) 140–144; https://doi.org/10.1172/JCI7034910.1172/JCI70349387123824292709Search in Google Scholar

108. World Health Organization, Malaria Vaccine Implementation Programme (MVIP); https://www.who.int/immunization/diseases/malaria/malaria_vaccine_implementation_programme/about/en/; last access date June 8, 2019Search in Google Scholar

109. World Health Organization, Malaria Vaccine Pilot Launched in Malawi. Country First of Three in Africa to Roll Out Landmark Vaccine, Geneva 23 April 2019; https://www.who.int/news-room/detail/23-04-2019-malaria-vaccine-pilot-launched-in-malawi; last access dateJune 8, 2019Search in Google Scholar

110. E. A. Ashley and A. P. Phyo, Drugs in development for malaria, Drugs78 (2018) 861–879; https://doi.org/10.1007/s40265-018-0911-910.1007/s40265-018-0911-9601350529802605Search in Google Scholar

111. P. B. Bloland and H. A. Williams, Malaria Control During Mass Population Movements and Natural Disasters, National Academies Press, Washington (DC) 2002, pp. 145–150.Search in Google Scholar

112. V. M. Avery, S. Bashyam, J. N. Burrows, S. Duffy, G. Papadatos, S. Puthukkuti, Y. Sambandan, S. Singh, T. Spangenberg, D. Waterson and P. Willis, Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum, Malar. J.13 (2014) Article ID 190 (12 pages); https://doi.org/10.1186/1475-2875-13-19010.1186/1475-2875-13-190409491924886460Search in Google Scholar

113. E. G. Severance, J. Xiao, L. Jones-Brando, S. Sabunciyan, Y. Li, M. Pletnikov, E. Prandovszky and R. Yolken, Toxoplasma gondii – a gastrointestinal pathogen associated with human brain diseases, Int. Rev. Neurobiol.131 (2016) 143–163; https://doi.org/10.1016/bs.irn.2016.08.00810.1016/bs.irn.2016.08.008550873827793216Search in Google Scholar

114. P. R. Torgerson and P. Mastroiacovo, The global burden of congenital toxoplasmosis: a systematic review, Bull. World Health Organ.91 (2013) 501–508.10.2471/BLT.12.111732369979223825877Search in Google Scholar

115. M. Pan, C. Lyu, J. Zhao and B. Shen, Sixty years (1957-2017) of research on toxoplasmosis in China – an overview, Front. Microbiol.8 (2017) 1–16; https://doi.org/10.3389/fmicb.2017.0182510.3389/fmicb.2017.01825562219328993763Search in Google Scholar

116. World Health Organization, Toxoplasmosis: Greater Awareness Needed; http://www.euro.who.int/en/health-topics/disease-prevention/food-safety/news/news/2016/11/toxoplasmosis-greater-awareness-needed; last access date November 23, 2018Search in Google Scholar

117. K. Dzitko, A. Paneth, T. Plech, J. Pawelczyk, P. Staczek, J. Stefanska and P. Paneth, 1,4-Disubstituted thiosemicarbazide derivatives are potent inhibitors of Toxoplasma gondii proliferation, Molecules19 (2014) 9926–9943; https://doi.org/10.3390/molecules1907992610.3390/molecules19079926629055625010466Search in Google Scholar

118. J. M. Furtado, J. R. Smith, R. Belfort, D. Gattey and K. L. Winthrop, Toxoplasmosis: a global threat, J. Global Infect. Dis.3 (2011) 281–284; https://doi.org/10.4103/0974-777X.8353610.4103/0974-777X.83536316281721887062Search in Google Scholar

119. R. P. Tenorio, C. S. Carvalho, C. S. Pessanha, J. G. de Lima, A. R. de Faria, A. J. Alves, E. J. T. de Melo and A. J. S. Goes, Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity, Bioorg. Med. Chem. Lett.15 (2005) 2575–2578; https://doi.org/10.1016/j.bmcl.2005.03.04810.1016/j.bmcl.2005.03.04815863319Search in Google Scholar

120. T. M. de Aquino, A. P. Liesen, R. E. A. da Silva, V. T. Lima, C. S. Carvalho, A. R. de Faria, J. M. de Araujo, J. G. de Lima, A. J. Alves, E. J. T. de Melo and A. J. S. Goes, Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids, Bioorg. Med. Chem.16 (2008) 446–456; https://doi.org/10.1016/j.bmc.2007.09.02510.1016/j.bmc.2007.09.02517905587Search in Google Scholar

121. A. P. Liesen, T. M. de Aquino, C. S. Carvalho, V. T. Lima, J. M. de Araujo, J. G. de Lima, A. R. de Faria, E. J. T. de Melo, A. J. Alves, E. W. Alves, A. Q. Alves and A. J. S. Goes, Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles, Eur. J. Med. Chem.45 (2010) 3685–3691; https://doi.org/10.1016/j.ejmech.2010.05.01710.1016/j.ejmech.2010.05.01720541294Search in Google Scholar

122. L. Monzote and A. Siddiq, Drug development to protozoan diseases, Open Med. Chem. J.5 (2011) 1–3; https://doi.org/10.2174/187410450110501000110.2174/1874104501105010001310387821629506Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo