1. bookVolumen 70 (2020): Edición 3 (September 2020)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Differential effects of acute and chronic treatment with the flavonoid chrysin on anxiety-like behavior and Fos immunoreactivity in the lateral septal nucleus in rats

Publicado en línea: 17 Feb 2020
Volumen & Edición: Volumen 70 (2020) - Edición 3 (September 2020)
Páginas: 387 - 397
Aceptado: 04 Sep 2019
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. C. Wolfman, H. Viola, H. Paladini, F. Dajas and J. H. Medina, Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea, Pharmacol. Biochem. Behav. 47 (1994) 1–4; https://doi.org/10.1016/0091-3057(94)90103-110.1016/0091-3057(94)90103-1Search in Google Scholar

2. C. B. Filho, C. R. Jesse, F. Donato, R. Giacomeli, L. Del Fabbro, M. da Silva Antunes, M. G. de Gomes, A. T. Goes, S. P. Boeira, M. Prigol and L. C. Souza, Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin, Neuroscience289 (2015) 367–380; https://doi.org/10.1016/j.neuroscience.2014.12.04810.1016/j.neuroscience.2014.12.048Search in Google Scholar

3. C. H. Vinkers and B. Olivier, Mechanisms underlying tolerance after long-term benzodiazepine use: A future for subtype-selective GABAA receptor modulators? Adv. Pharmacol. Sci.2012 (2012) Article ID 416864 (19 pages); https://doi.org/10.1155/2012/41686410.1155/2012/416864Search in Google Scholar

4. T. P. Sheehan, R. A. Chambers and D. S. Russell, Regulation of affect by the lateral septum: implications for neuropsychiatry, Brain. Res. Rev.46 (2004) 71–117; https://doi.org/10.1016/j.brainresrev.2004.04.00910.1016/j.brainresrev.2004.04.009Search in Google Scholar

5. B. Gaszner, V. Kormos, T. Kozicz, H. Hashimoto, D. Reglodi and Z. Helyes, The behavioral pheno-type of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus, Neuroscience202 (2012) 283–299; https://doi.org/10.1016/j.neuroscience.2011.11.04610.1016/j.neuroscience.2011.11.046Search in Google Scholar

6. B. Lkhagvasuren, T. Oka, Y. Nakamura, H. Hayashi, N. Sudo and K. Nakamura, Distribution of Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam treatment, Neuroscience272 (2014) 34–57; https://doi.org/10.1016/j.neuroscience.2014.04.04710.1016/j.neuroscience.2014.04.047Search in Google Scholar

7. National Research Council, Guide for the Care and Use of Laboratory Animals, 7th ed., National Academy Press, Washington (DC) 1996.Search in Google Scholar

8. Estados Unidos Mexicanos, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Norma Oficial Mexicana Nom-062-Zoo-1999, Especificaciones Tecnicas Para La Produccion, Cuidado y Uso de los Animales de Laboratorio, Diario Oficial (Primera Sección), pp. 107, Aug 22, 2001; https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf; last access date July 30, 2019Search in Google Scholar

9. C. M. Contreras, J. F. Rodríguez-Landa, R. I. García-Ríos, J. Cueto-Escobedo, G. Guillen-Ruiz and B. Bernal-Morales, Myristic acid produces anxiolytic-like effects in Wistar rats in the elevated plus maze, BioMed. Res. Int.2014 (2014) Article ID 492141 (8 pages); https://doi.org/10.1155/2014/49214110.1155/2014/492141Search in Google Scholar

10. W. M. S. Russell, R. L. Burch and C. W. Hume, The Principles of Humane Experimental Technique, Johns Hopkins Bloomberg School of Public Health, Baltimore 2005; http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc; last access date July 30, 2019Search in Google Scholar

11. F. Borsini, Role of the serotonergic system in the forced swimming test, Neurosci. Biobehav. Rev.19 (1995) 377–395; https://doi.org/10.1016/0149-7634(94)00050-B10.1016/0149-7634(94)00050-BSearch in Google Scholar

12. M. Caba, M. Pabello, M. L. Moreno and E. Meza, Main and accessory olfactory bulbs and their projections in the brain anticipate feeding in food-entrained rats, Chronobiol. Int.31 (2014) 869–877; https://doi.org/10.3109/07420528.2014.91862510.3109/07420528.2014.91862524915133Search in Google Scholar

13. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 4th ed., Academic Press, New York 1998.Search in Google Scholar

14. R. J. Rodgers, B. J. Cao, A. Dalvi and A. Holmes, Animal models of anxiety: an ethological perspective, Braz. J. Med. Biol. Res.30 (1997) 289–304; https://doi.org/10.1590/S0100-879X199700030000210.1590/S0100-879X19970003000029246227Search in Google Scholar

15. J. F. Rodríguez-Landa, F. Hernández-López, J. Cueto-Escobedo, E. V. Herrera-Huerta, E. Rivadeneyra-Domínguez, B. Bernal-Morales and E. Romero-Avendaño, Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats, Biomed. Pharmacother.109 (2019) 2387–2395; https://doi.org/10.1016/j.biopha.2018.11.11110.1016/j.biopha.2018.11.11130551498Search in Google Scholar

16. S. Saiyudthong and C. A. Marsden, Acute effects of bergamot oil on anxiety-related behaviour and corticosterone level in rats, Phytother. Res.25 (2011) 858–862; https://doi.org/10.1002/ptr.332510.1002/ptr.332521105176Search in Google Scholar

17. J. Liu, J. C. Garza, J. Bronner, C. S. Kim, W. Zhang and X. Y. Lu, Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine, Psychopharmacology (Berlin) 207 (2010) 535–545; https://doi.org/10.1007/s00213-009-1684-310.1007/s00213-009-1684-3405789519823809Search in Google Scholar

18. M. A. De Medeiros, L. C. Reis and L. E. Mello, Stress-induced c-Fos expression is differentially modulated by dexamethasone, diazepam and imipramine, Neuropsychopharmacology30 (2005) 1246–1256; https://doi.org/10.1038/sj.npp.130069410.1038/sj.npp.130069415714225Search in Google Scholar

19. T. Backstrom, D. Haage, M. Lofgren, I. M. Johansson, J. Stromberg, S. Nyberg, L. Andreen, L. Ossewaarde, G. A. van Wingen, S. Turkmen and S. K. Bengtsson, Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons, Neurosciences191 (2011) 46–54; https://doi.org/10.1016/j.neuroscience.2011.03.06110.1016/j.neuroscience.2011.03.06121600269Search in Google Scholar

20. E. Estrada-Camarena, I. Sollozo-Dupont, D. Islas-Preciado, M. E. González-Trujano, M. Carro-Juárez and C. López-Rubalcava, Anxiolytic- and anxiogenic-like effects of Montanoa tomentosa (Asteraceae): Dependence on the endocrine condition, J. Ethnopharmacol. 241 (2019) 112006; https://doi.org/10.1016/j.jep.2019.11200610.1016/j.jep.2019.11200631153863Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo