1. bookVolumen 70 (2020): Edición 1 (March 2020)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering

Publicado en línea: 01 Nov 2019
Volumen & Edición: Volumen 70 (2020) - Edición 1 (March 2020)
Páginas: 1 - 15
Aceptado: 26 Feb 2019
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. H. Tian, Z. Tang, X. Zhuang, X. Chen and X. Jing, Biodegradable synthetic polymers: Preparation, functionalization and biomedical application, Prog. Polym. Sci. 37 (2012) 237−280; https://doi.org/10.1016/j.progpolymsci.2011.06.00410.1016/j.progpolymsci.2011.06.004Search in Google Scholar

2. D. B. Hazer, E. Kiliçay and B. Hazer, Poly(3-hydroxyalkanoate)s: Diversification and biomedical applications A state of art review, Mater. Sci. Eng. C32 (2012) 637−647; https://doi.org/10.1016/j.msec.2012.01.02110.1016/j.msec.2012.01.021Search in Google Scholar

3. M. Goonoo, A. Bhaw-Luximon, P. Passanha, S. R. Esteves and D. Jhurry, Third generation poly(hydroxyacid) composite scaffolds for tissue reengineering, J. Biomed. Mater. Res. B Appl. Biomater.105B (2017) 1667−1684; https://doi.org/10.1002/jbm.b.3367410.1002/jbm.b.3367427080439Search in Google Scholar

4. A. R. Amini, C. T. Laurencin and S. P. Nukavarapu, Bone tissue engineering: recent advances and challenges, Crit. Rev. Biomed. Eng.40 (2012) 363−408.Search in Google Scholar

5. S. Bose, M. Roy and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends Biotechnol.30 (2012) 546−554; https://doi.org/10.1016/j.tibtech.2012.07.00510.1016/j.tibtech.2012.07.005344886022939815Search in Google Scholar

6. L. Wu, L. Wang, X. Wang and K. Xu, Synthesis, characterization and biocompatibility of novel bio-degradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(ε-caprolactone), Acta Biomater.6 (2010) 1079−1089; https://doi.org/10.1016/j.actbio.2009.08.01410.1016/j.actbio.2009.08.01419671452Search in Google Scholar

7. E. Masaeli, M. Morshed, P. Rasekhian, S. Karbasi, K. Karbalaie, F. Karamali, D. Abedi, S. Razavi, A. Jafarian-Dehkordi, M. H. Nasr-Esfahani and H. Baharvand, Does the tissue engineering architecture of Poly(3-hydroxybutyrate) scaffolds affect cell-material interactions? J. Biomed. Mater. Res. A100A (2012) 1907−1918; https://doi.org/10.1002/jbm.a.3413110.1002/jbm.a.3413122492575Search in Google Scholar

8. M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia and A. K. Mohanty, Biobased plastics and bionanocomposites: Current status and future opportunities, Prog. Polym. Sci. 38 (2013) 1653−1689; https://doi.org/10.1016/j.progpolymsci.2013.05.00610.1016/j.progpolymsci.2013.05.006Search in Google Scholar

9. C. Peña, T. Castillo, A. Garcia, M. Millan and D. Segura, Biotechnological strategies to improve production of microbial poly(3-hydroxybutyrate): a review of recent research work, Microbial Biotechnol. 7 (2014) 278−293; https://doi.org/10.1111/1751-7915.1212910.1111/1751-7915.12129424172224898500Search in Google Scholar

10. S. Centeno-Leija, G. Huerta-Beristain, M. Giles-Gomez, F. Bolivar, G. Gosset and A. Martinez, Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability, Antonie van Leeuwenhoek105 (2014) 687−696; https://doi.org/10.1007/s10482-014-0124-510.1007/s10482-014-0124-524500003Search in Google Scholar

11. A. M. Hayati, S. M. Hosseinalipour, H. R. Rezaie and M. A. Shokrgozar, Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering applications, Mater. Sci. Eng. C32 (2012) 416−422; https://doi.org/10.1016/j.msec.2011.11.01310.1016/j.msec.2011.11.013Search in Google Scholar

12. B. S. Kushwah, A. V. S. Kushwah and V. Singh, Towards understanding polyhydroxyalkanoates and their use, J. Polym. Res. 23 (2016) 153−166; https://doi.org/10.1007/s10965-016-0988-310.1007/s10965-016-0988-3Search in Google Scholar

13. R. W. Lenz and R. H. Marchessault, Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules6 (2005) 1−8; https://doi.org/10.1021/bm049700c10.1021/bm049700cSearch in Google Scholar

14. Y. Zhao, B. Zou, Z. Shi, Q. Wu and G. Q. Chen, The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats, Biomaterials28 (2007) 3063−3073; https://doi.org/10.1016/j.biomaterials.2007.03.00310.1016/j.biomaterials.2007.03.003Search in Google Scholar

15. S. Cheng, G. Q. Chen, M. Leski, B. Zou, Y. Wang and Q. Wu, The effect of D,L-β-hydroxybutyric acid on cell death and proliferation, Biomaterials27 (2006) 3758−3765; https://doi.org/10.1016/j.biomaterials.2006.02.04610.1016/j.biomaterials.2006.02.046Search in Google Scholar

16. C. J. Brigham and A. J. Sinskey, Applications of polyhydroxyalkanoates in the medical industry, Int. J. Biotechnol. Wellness Ind. (IJBWI) 1 (2012) 53−60Search in Google Scholar

17. E. I. Shishatskaya and T. G. Volova, A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures, J. Mater. Sci. Mater. Med. 15 (2004) 915−923; https://doi.org/10.1023/B:JMSM.0000036280.98763.c110.1023/B:JMSM.0000036280.98763.c1Search in Google Scholar

18. S. W. Hong, H. W. Hsu and M. T. Ye, Thermal properties and applications of low molecular weight polyhydroxybutyrate, J. Therm. Anal. Calorim. 111 (2013) 1243−1250; https://doi.org/10.1007/s10973-012-2503-310.1007/s10973-012-2503-3Search in Google Scholar

19. I. Manavitehrani, A. Fathi, H. Badr, S. Daly, A. N. Shirazi and F. Dehghani, Biomedical applications of biodegradable polyesters, Polymers8 (2016) Article ID 20 (32 pages); https://doi.org/10.3390/polym801002010.3390/polym8010020Search in Google Scholar

20. R. Y. Basha, S. Kumar and M. Doble, Design of biocomposite materials for bone tissue regeneration, Mater. Sci. Eng. C57 (2015) 452−463; https://doi.org/10.1016/j.msec.2015.07.01610.1016/j.msec.2015.07.016Search in Google Scholar

21. S. H. Lee and H. Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering, Adv. Drug Deliv. Rev.59 (2007) 339−359; https://doi.org/10.1016/j.addr.2007.03.01610.1016/j.addr.2007.03.016Search in Google Scholar

22. D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials21 (2000) 2529−2543; https://doi.org/10.1016/S0142-9612(00)00121-610.1016/S0142-9612(00)00121-6Search in Google Scholar

23. P. P. Lopes, M. P. Garcia, M. H. Fernandes and M. H. V. Fernandes, Acrylic formulations containing bioactive and biodegradable filters to be used as bone cements: Properties and biocompatibility assessment, Mater. Sci. Eng. C33 (2013) 1289−1299; https://doi.org/10.1016/j.msec.2012.12.02810.1016/j.msec.2012.12.02823827574Search in Google Scholar

24. M. Sadat-Shojai, M. T. Khorasani, A. Jamshidi and S. Irani, Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: A comprehensive study on the structural and in vivo biological properties, Mater. Sci. Eng. C33 (2013) 2776−2787; https://doi.org/10.1016/j.msec.2013.02.04110.1016/j.msec.2013.02.04123623096Search in Google Scholar

25. Y. Zhang, L. Hao, M. M. Savalani, R. A. Harris, L. Di Silvio and K. E. Tanner, In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering, J. Biomed. Mater. Res. A91A (2009) 1018−1027; https://doi.org/10.1002/jbm.a.3229810.1002/jbm.a.3229819107791Search in Google Scholar

26. H. Zhou and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater. 7 (2011) 2769−2781; https://doi.org/10.1016/j.actbio.2011.03.01910.1016/j.actbio.2011.03.01921440094Search in Google Scholar

27. J. Michel, M. Penna, J. Kochen and H. Cheung, Recent advances in hydroxyapatite scaffolds containing mesenchymal stem cells, Stem Cell. Int.2015 (2015) Article ID 305217 (13 pages); https://doi.org/10.1155/2015/30521710.1155/2015/305217446468726106425Search in Google Scholar

28. Y. W. Wang, Q. Wu, J. Chen and G. Q. Chen, Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexynoate) for bone reconstruction, Biomaterials26 (2005) 899−904; https://doi.org/10.1016/j.biomaterials.2004.03.03510.1016/j.biomaterials.2004.03.03515353201Search in Google Scholar

29. E. I. Shishatskaya, I. A. Khlusov and T. G. Volova, A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation, J. Biomater. Sci. Polym. Ed. 17 (2006) 481−498.Search in Google Scholar

30. J. Ramier, D. Grande, T. Bouderlique, O. Stoilova, N. Manolova, I. Rashkov, V. Langlois, P. Albanese and E. Renard, From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells, J. Mater. Sci. Mater. Med.25 (2014) 1563−1575; https://doi.org/10.1007/s10856-014-5174-810.1007/s10856-014-5174-824584668Search in Google Scholar

31. A. Saadat, A.A. Behnamghader, S. Karbasi, D. Abedi, M. Soleimani and A. Shafiee, Comparison of acellular and cellular bioactivity of poly 3-hydroxybutyrate/hydroxyapatite nanocomposite and poly 3-hydroxybutyrate scaffolds, Biotechnol. Bioprocess Eng. 18 (2013) 587−593; https://doi.org/10.1007/s12257-012-0744-410.1007/s12257-012-0744-4Search in Google Scholar

32. Z. Chen, Y. Song, J. Zhang, W. Liu, J. Cui, H. Li and F. Chen, Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering, Mater. Sci. Eng. C72 (2017) 341−351; https://doi.org/10.1016/j.msec.2016.11.07010.1016/j.msec.2016.11.07028024596Search in Google Scholar

33. M. Sadat-Shojai, Electrospun polyhydroxybutyrate/hydroxyapatite nanohybrids: microstructure and bone cell response, J. Mater. Sci. Technol.32 (2016) 1013−1020; https://doi.org/10.1016/j.jmst.2016.07.00710.1016/j.jmst.2016.07.007Search in Google Scholar

34. B. Pourmollaabbassi, S. Karbasi and B. Hashemibeni, Evaluate the growth and adhesion of osteo-blast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate, Adv. Biomed. Res. 5 (2016) Article ID 156 (11 pages); https://doi.org/10.4103/2277-9175.18848610.4103/2277-9175.188486507003927761431Search in Google Scholar

35. H. Hajiali, M. Hosseinalipour, S. Karbasi and M. A. Shokrgozar, The influence of bioglass nano-particles on the biodegradation and biocompatibility of poly(3-hydroxybutyrate) scaffolds, Int. J. Artif. Organs35 (2012) 1015−1024; https://doi.org/10.5301/ijao.500011910.5301/ijao.500011923065879Search in Google Scholar

36. S. K. Misra, T. I. Ansari, S. P. Valappil, D. Mohn, S. E. Philip, W. J. Stark, I. Roy, J. C. Knowles, V. Salih and A. R. Boccaccini, Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications, Biomaterials31 (2010) 2806−2815; https://doi.org/10.1016/j.biomaterials.2009.12.04510.1016/j.biomaterials.2009.12.04520045554Search in Google Scholar

37. M. Meischel, J. Eichler, E. Martinelli, U. Karr, J. Weigel, G. Schmöller, E. K. Tschegg, S. Fischerauer, A. M. Weinberg and S. E. Stanzl-Tschegg, Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications, J. Mech. Behav. Biomed. Mater.53 (2016) 104−118; https://doi.org/10.1016/j.jmbbm.2015.08.00410.1016/j.jmbbm.2015.08.00426318571Search in Google Scholar

38. M. Franceschini, A. Di Matteo, H. Bösebeck, H. Büchner and S. Vogt, Treatment of a chronic recurrent fistulized tibial osteomyelitis: administration of a novel antibiotic-loaded bone substitute combined with a pedicular muscle flap sealing, Eur. J. Orthop. Surg. Traumatol.22 (2012) 245−249; https://doi.org/10.1007/s00590-012-0956-510.1007/s00590-012-0956-5348699323136563Search in Google Scholar

39. L. Medvecky, Microstructure and properties of polyhydroxybutyrate-chitosan-nanohydroxyapatite composite scaffolds, Sci. World J. 2012 (2012) Article ID 537973 (8 pages); https://doi.org/10.1100/2012/53797310.1100/2012/537973332248922547987Search in Google Scholar

40. H. Y. Tai, E. Fu, L.-P. Cheng and T.-M. Don, Fabrication of asymmetric membranes from polyhydroxybutyrate and biphasic calcium phosphate/chitosan for guided bone regeneration, J. Polym. Res. 21 (2014) Article ID 421 (12 pages); https://doi.org/10.1007/s10965-014-0421-810.1007/s10965-014-0421-8Search in Google Scholar

41. M. Giretova, L. Medvecky, R. Stulajterova, T. Sopcak, J. Briancin and M. Tatarkova, Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response, J. Mater. Sci. Mater. Med. 27 (2016) Article ID 181; https://doi.org/10.1007/s10856-016-5801-710.1007/s10856-016-5801-727770394Search in Google Scholar

42. Y. Ding, Q. Yao, W. Li, D. W. Schubert, A. R. Boccaccini and J. A. Roether, The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds, Colloids Surf. B Biointerfaces136 (2015) 93−98; https://doi.org/10.1016/j.colsurfb.2015.08.02310.1016/j.colsurfb.2015.08.02326364089Search in Google Scholar

43. Y. Ding, W. Li, T. Müller, D. W. Schubert, A. R. Boccaccini, Q. Yao and J. A. Roether, Electrospun polyhydroxybutyrate/poly(ε-caprolactone)/58S sol−gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering, Appl. Mater. Interfaces8 (2016) 17098−17108; https://doi.org/10.1021/acsami.6b0399710.1021/acsami.6b0399727295496Search in Google Scholar

44. C. Zhijiang, X. Yi, Y. Haizheng, J. Jia and Y. Liu, Poly(hydroxybutyrate)/cellulose acetate blend nano-fiber scaffolds: Preparation, characterization and cytocompatibility, Mater. Sci. Eng. C58 (2016) 757−767; https://doi.org/10.1016/j.msec.2015.09.04810.1016/j.msec.2015.09.048Search in Google Scholar

45. A. Venault, A. Subarja and Y. Chang, Zwitterionic polyhydroxybutyrate electrospun fibrous membranes with a compromise of bioinert control and tissue-cell growth, Langmuir33 (2017) 2460−2471; https://doi.org/10.1021/asc.langmuir.6b04683Search in Google Scholar

46. N. Goonoo, A. Bhaw-Luximon, P. Passanha, S. Esteves, H. Schönherr and D. Jhurry, Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides, Mater. Sci. Eng. C76 (2017) 13−24; https://doi.org/10.1016/j.msec2017.02.156Search in Google Scholar

47. H. Li, H. Pan, C. Ning, G. Tan, J. Liao and G. Ni, Magnesium with micro-arc oxidation coating and polymeric membrane: an in vitro study on microenvironment, J. Mater. Sci. Mater. Med.26 (2015) Article ID 147; https://doi.org/10.1007/s10856-015-5428-010.1007/s10856-015-5428-0Search in Google Scholar

48. Y. W. Wang, Q. Wu and G. Q. Chen, Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds, Biomaterials25 (2004) 669−675; https://doi.org/10.1016/S0142-9612(03)00561-110.1016/S0142-9612(03)00561-1Search in Google Scholar

49. M. Sadat-Shojai, M. T. Khorasani and A. Jamshidi, A new strategy for fabrication of bone scaffolds using electrospun nano-Hap/PHB fibers and protein hydrogels, Chem. Eng. J. 289 (2016) 38−47; https://doi.org/10.1016/j.cej.2015.12.07910.1016/j.cej.2015.12.079Search in Google Scholar

50. S. W. Peng, X. Y. Guo, G. G. Shang, J. Li, X. Y. Xu, M. L. You, P. Li and G. Q. Chen, An assessment of the risk of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity, Biomaterials32 (2011) 2546−2555; https://doi.org/10.1016/j.biomaterials.2010.12.05110.1016/j.biomaterials.2010.12.05121251707Search in Google Scholar

51. A. Q. Ali, T. P. Kannan, A. Ahmad and Ab. R. Samsudin, In vitro genotoxicity tests for polyhydroxy-butyrate − A synthetic biomaterial, Toxicol. in Vitro22 (2008) 57−67; https://doi.org/10.1016/j.tiv.2007.08.00110.1016/j.tiv.2007.08.00117892925Search in Google Scholar

52. Y. Wang, X. L. Jiang, S. W. Peng, X. Y. Guo, G. G. Shang, J. C. Chen, Q. Wu and G. Q. Chen, Induced apoptosis of osteoblasts proliferating on polyhydroxyalkanoates, Biomaterials34 (2013) 3737−3746; https://doi.org/10.1016/j.biomaterials.2013.01.08810.1016/j.biomaterials.2013.01.08823433672Search in Google Scholar

53. C. Rentsch, B. Rentsch, A. Breier, A. Hofmann, S. Manthey, D. Scharnweber and H. Zwipp, Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats, J. Biomed. Mater. Res. A92A (2010) 185−195; https://doi.org/10.1002/jbm.a.3231410.1002/jbm.a.3231419170159Search in Google Scholar

54. Z. Karahaliloğlu, B. Ercan, E. N. Taylor, S. Chung, E. B. Denkbas and T. J. Webster, Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration, J. Biomed. Nanotechnol.11 (2015) 2253−2263; https://doi.org/10.1166/jbn.2015.210610.1166/jbn.2015.210626510318Search in Google Scholar

55. I. Rozila, P. Azari, S. Munirah, W. K. Z. W. Safwani, S. N. Gan, A. G. N. Azurah, J. Jahendran, B. Pingguan-Murphy and K. H. Chua, Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds, J. Biomed. Mater. Res. A104A (2016) 377−387; https://doi.org/10.1002/jbm.a.3557310.1002/jbm.a.3557326414782Search in Google Scholar

56. P. Slepička, I. Michaljaničová, S. Rimpelová and V. Švorčík, Surface roughness in action – Cells in opposition, Mater. Sci. Eng. C76 (2017) 818−826; https://doi.org/10.1016/j.msec.2017.03.06110.1016/j.msec.2017.03.06128482596Search in Google Scholar

57. H. E. Bernd, C. Kunze, T. Freier, K. Sternberg, S. Kramer, D. Behrend, F. Prall, M. Donat and B. Kramp, Poly(3-hydroxybutyrate) (PHB) patches for covering anterior skull base defects - an animal study with minipigs, Acta Otolaryngol. 129 (2009) 1010−1017; https://doi.org/10.1080/0001648080255249310.1080/0001648080255249319034735Search in Google Scholar

58. T. Gredes, T. Gedrange, C. Hinüber, M. Gelinsky and C. Kunert-Keil, Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration, Ann. Anat.199 (2015) 36−42; https://doi.org/10.1016/j.aanat.2014.04.00310.1016/j.aanat.2014.04.00324862689Search in Google Scholar

59. E. G. L. Alves, C. M. F. Rezende, R. Serakides, M. M. Pereira and I. R. Rosado, Orthopedic implant of a polyhydroxybutyrate (PHB) and hydroxyapatite composite in cats, J. Feline Med. Surg. 13 (2011) 546-552; https://doi.org/10.1016/j.jfms.2011.03.00210.1016/j.jfms.2011.03.00221530343Search in Google Scholar

60. A. Celarek, T. Kraus, E. K. Tschegg, S. F. Fischerauer, S. Stanzl-Tschegg, P. J. Uggowitzer and A. M. Weinberg, PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants? Mater. Sci. Eng. C32 (2012) 1503−1510; https://doi.org/10.1016/j.msec.2012.04.03210.1016/j.msec.2012.04.03224364952Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo