1. bookVolumen 70 (2020): Edición 2 (June 2020)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Synthesis of bioactive quinazolin-4(3H)-one derivatives via microwave activation tailored by phase-transfer catalysis

Publicado en línea: 16 Jan 2020
Volumen & Edición: Volumen 70 (2020) - Edición 2 (June 2020)
Páginas: 161 - 178
Aceptado: 06 Apr 2019
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. J. He, X. Wang, X. Zhao, Y. J. Liang, H. He and L. Fu, Synthesis and antitumor activity of novel quinazoline derivatives containing thiosemicarbazide moiety, Eur. J. Med. Chem.54 (2012) 925–930; https://doi.org/10.1016/j.ejmech.2012.06.00310.1016/j.ejmech.2012.06.003Search in Google Scholar

2. C. D. Haffner, J. D. Becherer, E. E. Boros, R. Cadilla, T. Carpenter, D. Cowan, D. N. Deaton, Y. Guo, W. Harrington, B. R. Henke, M. R. Jeune, I. Kaldor, N. Milliken and K. G. Petrov, Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors, J. Med. Chem.58 (2015) 3548–3571; https://doi.org/10.1021/jm502009h10.1021/jm502009hSearch in Google Scholar

3. R. V. Sheorey, A. Thangathiruppathy and V. Alagarsamy, Synthesis and pharmacological evaluation of 3-propyl-2-substitutedamino-3h-quinazolin-4-ones as analgesic and anti-inflammatory agents, J. Heterocycl. Chem.53 (2016) 1371–1377; https://doi.org/10.1002/jhet.197310.1002/jhet.1973Search in Google Scholar

4. M. Hrast, K. Rožman, M. Jukič, D. Patin, S. Gobec and M. Sova, Synthesis and structure-activity relationship study of novel quinazolinone-based inhibitors of MurA, Bioorg. Med. Chem.27 (2017) 3529–3533; https://doi.org/10.1016/j.bmcl.2017.05.06410.1016/j.bmcl.2017.05.064Search in Google Scholar

5. M. Sarfraz, N. Sultana, U. Rashid, M. S. Akram, A. Sadiq and M. I. Tariq, Synthesis, biological evaluation and docking studies of 2,3-dihydroquinazolin-4(1H)-one derivatives as inhibitors of cholinesterases, Bioorg. Chem.70 (2017) 237–244; https://doi.org/10.1016/j.bioorg.2017.01.00410.1016/j.bioorg.2017.01.004Search in Google Scholar

6. I. K. Kacker and S. H. Zaheer, Reactions of substituted 3:4-dihydro-4-oxoquinazolines with Grignard reagents, J. Chem. Soc. (1956) 415–418; https://doi.org/10.1039/JR956000041510.1039/jr9560000415Search in Google Scholar

7. J. F. Wolfe, T. L. Rathman, M. C. Sleevi, J. A. Campbell and T. D. Greenwood, Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl-4(3H)-quinazolinones, J. Med. Chem.33 (1990) 161–166; https://doi.org/10.1021/jm00163a02710.1021/jm00163a027Search in Google Scholar

8. J. Bergman and A. Brynolf, Synthesis of chrysogine, a metabolite of Penicillium chrysogenum and some related 2-substituted 4-(3H)-quinazolinones, Tetrahedron46 (1990) 1295–1310; https://doi.org/10.1016/s0040-4020(01)86694-110.1016/S0040-4020(01)86694-1Search in Google Scholar

9. S. Eguchi, T. Suzuki, T. Okawa, Y. Matsushita, E. Yashima and Y. Okamoto, Synthesis of optically active vasicinone based on intramolecular aza-Wittig reaction and asymmetric oxidation, J. Org. Chem.61 (1996) 7316–7319; https://doi.org/10.1021/jo960928310.1021/jo960928311667656Search in Google Scholar

10. K. Smith, G. A. El-Hiti and M. F. Abdel-Megeed, Regioselective lithiation of chiral 3-acylamino-2-alkylquinazolin-4(3H)-ones: Application in synthesis, Synthesis (issue 13) (2004) 2121–2130; https://doi.org/10.1055/s-2004-82916910.1055/s-2004-829169Search in Google Scholar

11. C. D. Dago, C. N. Ambeu, W.-K. Coulibaly, Y.-A. Beekro, J. Mamyrbeekova, A. Defontaine, B. Baratte, S. Bach, S. Ruchaud, R. Le Gueevel, M. Ravache, A. Corlu and J.-P. Bazureau, Synthetic development of new 3-(4-arylmethylamino)butyl-5-arylidene-rhodanines under microwave irradiation and their effects on tumor cell lines and against protein kinases, Molecules20 (2015) 12412–12435; https://doi.org/10.3390/molecules20071241210.3390/molecules200712412633231826184130Search in Google Scholar

12. M. A. El-Hashash, T. M. Abdel-Rahman and Y. A. El-Badry, Synthesis and behavior of 2-carboxyvinyl-6,8-dibromo-4H-3,1-benzoxazin-4-one towards nitrogen, carbon and sulphur nucleophiles, Indian J. Chem.45B (2006) 1470–1477; https://doi.org/10.1002/chin.20064103010.1002/chin.200641030Search in Google Scholar

13. H. Chai, J. Li, L. Yang, H. Lu, Z. Qi and D. Shi, Copper-catalyzed tandem N-arylation/condensation: synthesis of quinazolin-4(3H)-ones from 2-halobenzonitriles and amides, RSC Adv.4 (2014) 44811–44814; https://doi.org/10.1039/c4ra08031a10.1039/C4RA08031ASearch in Google Scholar

14. G. A. Obafemi, O. A. Fadare, J. P. Jasinski, S. P. Millikan, E. M. Obuotor, E. O. Iwalewa, S. O. Famuyiwa, K. Sanusi, Y. Yilmaz and U. Ceylan, Microwave-assisted synthesis, structural characterization, DFT studies, antibacterial and antioxidant activity of 2-methyl-4-oxo-1,2,3,4-tetrahydroquinazoline-2-carboxylic acid, J. Mol. Str.1155 (2018) 610–622; https://doi.org/10.1016/j.molstruc.2017.11.01810.1016/j.molstruc.2017.11.018Search in Google Scholar

15. M. A. El-Hashash and Y. A. El-Badry, Synthesis of a novel series of 2,3-disubstituted quinazolin-4(3H)-ones as a product of a nucleophilic attack at C(2) of the corresponding 4H-3,1-benzoxazin-4-one, Helv. Chim. Acta94 (2011) 389–396; https://doi.org/10.1002/hlca.20100023010.1002/hlca.201000230Search in Google Scholar

16. D. H. Hieu, D. T. Anh, N. M. Tuan, P-T. Hai, L.-T.-T. Huong, J. Kim, J. S. Kang, T. K. Vu, P. T. P. Dung, S.-B. Han, N.-H. Nam and N.-D. Hoa, Design, synthesis and evaluation of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones as histone deacetylase in hibitors and antitumor agents, Bioorg. Chem.76 (2018) 258–267; https://doi.org/10.1016/j.bioorg.2017.12.00710.1016/j.bioorg.2017.12.00729223029Search in Google Scholar

17. Y. A. El-Badry, N. A. Anter and H. S. El-Sheshtawy, Synthesis and evaluation of new polysubstituted quinazoline derivatives as potential antimicrobial agents, Pharma Chem.4 (2012) 1361–1370.Search in Google Scholar

18. C. Valgas, S. De Souza, E. Smaenia and A. Smaenia, Screening methods to determine antibacterial activity of natural products, Braz. J. Microbiol.38 (2007) 369–380; https://doi.org/10.1590/s1517-8382200700020003410.1590/S1517-83822007000200034Search in Google Scholar

19. A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines, J. Natl. Cancer Inst.83 (1991) 757–766; https://doi.org/10.1093/jnci/83.11.75710.1093/jnci/83.11.7572041050Search in Google Scholar

20. M. R. Boyd and K. D. Paull, Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen, Drug Develop. Res.34 (1995) 91–109; https://doi.org/10.1002/ddr.43034020310.1002/ddr.430340203Search in Google Scholar

21. R. H. Shoemaker, The NCI60 human tumour cell line anticancer drug screen, Nat. Rev. Cancer6 (2006) 813–823; https://doi.org/10.1038/nrc195110.1038/nrc195116990858Search in Google Scholar

22. S. Fozooni and S. Firoozi, Microwave-assisted synthesis of new quinazolinone and (dihydroquinazolinylphenyl)oxazolone derivatives, Chem. Heterocycl. Compd.51 (2015) 340–345; https://doi.org/10.1007/s10593-015-1705-610.1007/s10593-015-1705-6Search in Google Scholar

23. I. Nouira, I. K. Kostakis, C. Dubouilh and E. Chosson, Decomposition of formamide assisted by microwaves, a tool for synthesis of nitrogen-containing heterocycles, Tetrahedron Lett.49 (2008) 7033–7036; https://doi.org/10.1016/j.tetlet.2008.09.13510.1016/j.tetlet.2008.09.135Search in Google Scholar

24. A. Loupy, A. Petit and D. Bogdal, Microwaves and Phase-Transfer Catalysis, in Microwaves in Organic Synthesis (Ed. A. Loupy), 2nd ed., Wiley-VCH Verlag GmbH & KgaA, Weinheim 2006, pp. 278–280.10.1002/9783527619559.ch6Search in Google Scholar

25. A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault and D. Mathé, New solvent-free organic synthesis using focused microwaves, Synthesis (1998) 1213–1234; https://doi.org/10.1055/s-1998-608310.1055/s-1998-6083Search in Google Scholar

26. Z.-Z. Huang and L.-S. Zu, Rapid N-alkylation of benzoxazinones and benzothiazinones under microwave irradiation, Org. Prep. Proc. Int.28 (1996) 121–123; https://doi.org/10.1080/0030494960935591710.1080/00304949609355917Search in Google Scholar

27. M. Gupta and B. P. Wakhloo, Tetrabutylammonium bromide mediated Knoevenagel condensation in water: Synthesis of cinnamic acids, ARKIVOC15 (2007) 94–98; https://doi.org/10.3998/ark.5550190.0008.11010.3998/ark.5550190.0008.110Search in Google Scholar

28. V. Blokzijl and J. B. F. N. Engberts, Hydrophobic effects. Opinions and facts, Angew. Chem. Int. Edit.32 (1993) 1545–1579.10.1002/anie.199315451Search in Google Scholar

29. F. Bigi, M. L. Conforti, R. Maggi, A. Piccinno and G. Sartori, Clean synthesis in water: uncatalyzed preparation of ylidenemalononitriles, Green Chem.2 (2000) 101–103; https://doi.org/10.1039/b001246g10.1039/b001246gSearch in Google Scholar

30. M. C. Alley, D. Scudiero, P. A. Monks, M. L. Hursey and M. J. Czerwinski, Feasibility of drug screening with panels of human tumor cell lines using a micro-culture tetrazolium assay, Cancer Res.48 (1988) 589–601.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo