1. bookVolumen 69 (2019): Edición 3 (September 2019)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Inhibitory effect of taspine derivative TAD1822-7 on tumor cell growth and angiogenesis via suppression of EphrinB2 and related signaling pathways

Publicado en línea: 26 Jun 2019
Volumen & Edición: Volumen 69 (2019) - Edición 3 (September 2019)
Páginas: 423 - 431
Aceptado: 03 Dec 2018
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. D. S. Dizon, L. Krilov, E. Cohen, T. Gangadhar, P. A. Ganz, T. A. Hensing, S. Hunger, S. S. Krishnamurthi, A. B. Lassman, M. J. Markham, E. Mayer, M. Neuss, S. K. Pal, L. C. Richardson, R. Schilsky, G. K. Schwartz, D. R. M. A. Spriggs, Villalona-Calero, G. Villani and G. Masters, Clinical cancer advances 2016: Annual report on progress against cancer from the American Society of Clinical Oncology, J. Clin. Oncol. 34 (2016) 987–1011; https://doi.org/10.1200/JCO.2015.65.842710.1200/JCO.2015.65.8427Search in Google Scholar

2. N. Holder and R. Klein, Eph receptors and ephrins: effectors of morphogenesis, Development10 (1999) 2033–2044.Search in Google Scholar

3. J. E. Chrencik, A. Brooun, M. L. Kraus, M. I. Recht, A. R. Kolatkar, G. W. Han, J. M. Seifert, H. Widmer, M. Auer and P. Kuhn, Structural and biophysical characterization of the EphB4*ephrinB2 protein-protein interaction and receptor specificity, J. Biol. Chem. 38 (2006) 28185–28192; https://doi.org/10.1074/jbc.M60576620010.1074/jbc.M605766200Search in Google Scholar

4. S. S. Gerety, H. U. Wang, Z. F. Chen and D. J. Anderson, Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development, Mol. Cell. 3 (1999) 403–414.10.1016/S1097-2765(00)80342-1Search in Google Scholar

5. J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other diseases, Nat. Med. 1 (1995) 27–31; https://doi.org/10.1038/nm0195-2710.1038/nm0195-277584949Search in Google Scholar

6. S. R. Kumar, J. Singh, G. Xia, V. Krasnoperov, L. Hassanieh, E. J. Ley, J. Scehnet, N. G. Kumar, D. Hawes, M. F. Press, F. A. Weaver and P. S. Gill, Receptor tyrosine kinase EphB4 is a survival factor in breast cancer, Am. J. Pathol. 169 (2006) 279–293; https://doi.org/10.2353/ajpath.2006.05088910.2353/ajpath.2006.050889169876916816380Search in Google Scholar

7. D. Yang, C. Jin, H. Ma, M. Huang, G. Shi, J. Wang and M. Xiang, EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease, Angiogenesis19 (2016) 297–309; https://doi.org/10.1007/s10456-016-9514-910.1007/s10456-016-9514-927216867Search in Google Scholar

8. C. Wang, J. Dong, Y. Zhang, F. Wang, H. Gao, P. Li, S. Wang and J. Zhang, Design, synthesis and biological evaluation of biphenyl urea derivatives as novel VEGFR-2 inhibitors, Medchemcomm11 (2013) 1434–1438; https://doi.org/10.1039/C3MD00192J10.1039/c3md00192jSearch in Google Scholar

9. Q. Y. Chen, Y. Zheng, D. M. Jiao, F. Y. Chen, H. Z. Hu, Y. Q. Wu, J. Song, J. Yan, L. J. Wu and G. Y. Lv, Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway, J. Nutr. Biochem. 25 (2014) 177–185; https://doi.org/10.1016/j.jnutbio.2013.10.00410.1016/j.jnutbio.2013.10.00424445042Search in Google Scholar

10. Y. Chen, G. Stamatoyannopoulos and C. Z. Song, Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro, Cancer Res. 63 (2003) 4801–4804.Search in Google Scholar

11. M. E. Pitulescu and R. H. Adams, Eph/ephrin molecules – a hub for signaling and endocytosis, Genes Dev. 24 (2010) 2480–2492; https://doi.org/10.1101/gad.197391010.1101/gad.1973910297592421078817Search in Google Scholar

12. J. S. Nielsen and K. M. McNagny, Novel functions of the CD34 family, J. Cell Sci. 121 (2008) 3683–3692; https://doi.org/10.1242/jcs.03750710.1242/jcs.03750718987355Search in Google Scholar

13. T. Makinen, R. H. Adams, J. Bailey, Q. Lu, A. Ziemiecki, K. Alitalo, R. Klein and G. A. Wilkinson, PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature, Genes Dev. 19 (2005) 397–410; https://doi.org/10.1101/gad.33010510.1101/gad.33010554651815687262Search in Google Scholar

14. T. V. Byzova, C. K. Goldman, N. Pampori, K. A. Thomas, A. Bett, S. J. Shattil and E. F. Plow, A mechanism for modulation of cellular responses to VEGF: activation of the integrins, Mol. Cell. 6 (2000) 851–860.Search in Google Scholar

15. T. Makinen, T. Veikkola, S. Mustjoki, T. Karpanen, B. Catimel, E. C. Nice, L. Wise, A. Mercer, H. Kowalski, D. Kerjaschki, S. A. Stacker, M. G. Achen and K. Alitalo, Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3, EMBO J. 20 (2001) 4762–4773; https://doi.org/10.1093/emboj/20.17.476210.1093/emboj/20.17.476212559611532940Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo