1. bookVolumen 69 (2019): Edición 2 (June 2019)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Antimicrobial assesment of aroylhydrazone derivatives in vitro

Publicado en línea: 28 Mar 2019
Volumen & Edición: Volumen 69 (2019) - Edición 2 (June 2019)
Páginas: 277 - 285
Aceptado: 14 Dec 2018
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Ł. Popiołek, Hydrazide-hydrazones as potential antimicrobial agents: overview of the literature since 2010, Med. Chem. Res. 26 (2017) 287–301; DOI 10.1007/s00044-016-1756-ySearch in Google Scholar

2. M. K. Dahlgren, C. E. Zetterström, Å. Gylfe, A. Linusson and M. Elofsson, Statistical molecular design of a focused salicylidene acylhydrazide library and multivariate QSAR of inhibition of type III secretion in the Gram-negative bacterium Yersinia, Bioorg. Med. Chem. 18 (2010) 2686–2703; https://doi.org/10.1016/j.bmc.2010.02.02210.1016/j.bmc.2010.02.02220219378Search in Google Scholar

3. P. V. Bernhardt, P. Chin, P. C. Sharpe and D. R. Richardson, Hydrazone chelators for the treatment of iron overload disorders: iron coordination chemistry and biological activity, Dalton Trans. 30 (2007) 3232–3244; https://doi.org/10.1039/b704102k10.1039/b704102k17893768Search in Google Scholar

4. K. Hruskova, P. Kovarikova, P. Bendova, P. Haskova, E. Mackova, J. Stariat, A. Vavrova, K. Vavrova and T. Simunek, Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis, Chem. Res. Toxicol. 24 (2011) 290–302; https://doi.org/10.1021/tx100359t10.1021/tx100359t21214215Search in Google Scholar

5. P. Kovaríkova, Z. Mrkvičkova and J. Klimeš, Investigation of the stability of aromatic hydrazones in plasma and related biological material, J. Pharm. Biomed. Anal. 47 (2008) 360–370; https://doi.org/10.1016/j.jpba.2008.01.01110.1016/j.jpba.2008.01.01118294799Search in Google Scholar

6. N. Galić, A. Dijanošić, D. Kontrec and S. Miljanić, Structural investigation of aroylhydrazones in dimethylsulphoxide/water mixtures, Spectrochim. Acta A95 (2012) 347–353; https://doi.org/10.1016/j.saa.2012.03.08610.1016/j.saa.2012.03.08622542687Search in Google Scholar

7. C. F. Da Costa, A. C. Pinheiro, M. V. De Almeida, M. C. Lourenço and M. V. De Souza, Synthesis and antitubercular activity of novel amino acid derivatives, Chem. Biol. Drug Des. 79 (2012) 216–222; https://doi.org/10.1111/j.1747-0285.2011.01269.x10.1111/j.1747-0285.2011.01269.x22078007Search in Google Scholar

8. M. C. Mandewale, B. Thorat, Y. Nivid, R. Jadhav, A. Nagarsekar and R. Yamgar, Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II) complexes, J. Saudi Chem. Soc. 22 (2018) 218–228; https://doi.org/10.1016/j.jscs.2016.04.00310.1016/j.jscs.2016.04.003Search in Google Scholar

9. Y. Ozkay, Y. Tunali, H. Karaca and I. Işikdağ, Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety, Eur. J. Med. Chem. 45 (2010) 3293–3298; https://doi.org/10.1016/j.ejmech.2010.04.01210.1016/j.ejmech.2010.04.01220451306Search in Google Scholar

10. T. Benković, A. Kenđel, J. Parlov-Vuković, D. Kontrec, V. Chiş, S. Miljanić and N. Galić, Multiple dynamics of aroylhydrazone induced by mutual effect of solvent and light - spectroscopic and computational study, J. Mol. Liq. 255 (2018) 18–25; https://doi.org/10.1016/j.saa.2017.09.03810.1016/j.saa.2017.09.03828938170Search in Google Scholar

11. T. Benković, D. Kontrec, V. Tomišić, A. Budimir and N. Galić, Acid-base properties and kinetics of hydrolysis of aroylhydrazones derived from nicotinic acid hydrazide, J. Solution Chem. 45 (2016) 1227–1245; https://doi.org/10.1007/s10953-016-0504-810.1007/s10953-016-0504-8Search in Google Scholar

12. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID), EUCAST Discussion Document E. Dis 5.1, Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, Clin. Microbiol. Infect. 9 (2003) 1–7; https://doi.org/10.1046/j.1469-0691.2003.00790.x10.1046/j.1469-0691.2003.00790.xSearch in Google Scholar

13. M. C. Arendrup, J. Meletiadis, J. W. Mouton, K. Lagrou, Petr Hamal, J. Guinea, and the Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing, EUCAST Definitive Document E. Def. 7.3.1. January 2017 - Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts; http://www.eucast.org/ast_of_fungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/; last access date December 13, 2018.Search in Google Scholar

14. J. Vlainić, I. Kosalec, K. Pavić, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Insights into biological activity of ureidoamides with primaquine and amino acid moieties, J. Enzyme Inhib. Med. Chem. 33 (2018) 376–382; https://doi.org/10.1080/14756366.2017.142306710.1080/14756366.2017.1423067602103529363364Search in Google Scholar

15. S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Fluorine in medicinal chemistry, Chem. Soc. Rev. 37 (2008) 320–330;10.1039/B610213CSearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo