1. bookVolumen 69 (2019): Edición 1 (March 2019)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Pancreatic lipase inhibitory activity of selected pharmaceutical agents

Publicado en línea: 07 Dec 2018
Volumen & Edición: Volumen 69 (2019) - Edición 1 (March 2019)
Páginas: 1 - 16
Aceptado: 24 Sep 2018
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. F. K. Winkler, Structure of human pancreatic lipase, Nature343 (1990) 771–774; https://doi.org/10.1038/343771a010.1038/343771a0Search in Google Scholar

2. S. Ransac, Y. Gargouri, F. Marguet, G. Buono, C. Beglinger, P. Hildebrand, H. Lengsfeld, P. Hadváry and R. Verger, Covalent inactivation of lipases, Methods Enzymol.286 (1997) 190–231; https://doi.org/10.1016/S0076-6879(97)86012-010.1016/S0076-6879(97)86012-0Search in Google Scholar

3. G. Singh, S. Suresh, B. V. Krishna and K. R. Kumar, Lipase inhibitors from plants and their medical applications, Int. J. Pharm. Pharm. Sci.7 (2015) 1–5.Search in Google Scholar

4. E. Kato, M. Yama, R. Nakagomi, T. Shibata, K. Hosokawa and J. Kawabata, Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica, Bioorg. Med. Chem. Lett.22 (2012) 6410–6412; https://doi.org/10.1016/j.bmcl.2012.08.05510.1016/j.bmcl.2012.08.05522995617Search in Google Scholar

5. Y. Narita, K. Iwai, T. Fukunaga and O. Nakagiri, Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil, Biosci. Biotechnol. Biochem. 76 (2012) 2329–2331; https://doi.org/10.1271/bbb.12051810.1271/bbb.12051823221697Search in Google Scholar

6. E. Mentese, F. Yιlmaz, N. Karaali, S. Ülker and B. Kahveci, Rapid synthesis and lipase inhibition activity of some new benzimidazole and perimidine derivatives, Bioorg. Khim.40 (2014) 363–369; https://doi.org/10.1134/S106816201403009110.1134/S1068162014030091Search in Google Scholar

7. Y. H. Jo, S. B. Kim, Q. Liu, J. W. Lee, B. Y. Hwang and M. K. Lee, Benzylated and prenylated flavonoids from the root barks of Cudrania tricuspidata with pancreatic lipase inhibitory activity, Bioorg. Med. Chem. Lett.25 (2015) 3455–3457; https://doi.org/10.1016/j.bmcl.2015.07.01710.1016/j.bmcl.2015.07.01726227773Search in Google Scholar

8. S. N. Sridhar, G. Ginson, P. O. Venkataramana Reddy, M. P. Tantak, D. Kumar and A. T. Paul, Synthesis, evaluation and molecular modeling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors, Bioorg. Med. Chem. 25 (2017) 609–620; https://doi.org/10.1016/j.bmc.2016.11.03110.1016/j.bmc.2016.11.03127908755Search in Google Scholar

9. A. M. Brzozowski, U. Derewenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S. A. Patkar and L. Thim, A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature351 (1991) 491–494; https://doi.org/10.1038/351491a010.1038/351491a02046751Search in Google Scholar

10. M. P. Egloff, L. Sarda, R. Verger, C. Cambillau and H. van Tilbeurgh, Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase, Protein Sci.4 (1995) 44–57; https://doi.org/10.1002/pro.556004010710.1002/pro.556004010721429707773176Search in Google Scholar

11. A. Bourbon-Freie, R. E. Dub, X. Xiao and M. E. Lowe, Trp-107 and trp-253 account for the increased steady state fluorescence that accompanies the conformational change in human pancreatic triglyceride lipase induced by tetrahydrolipstatin and bile salt, J. Biol. Chem.284 (2009) 14157–14164; https://doi.org/10.1074/jbc.M90115420010.1074/jbc.M901154200268286419346257Search in Google Scholar

12. V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carrièreand and J. F. Cavalier, Effects of surfactants on lipase structure, activity, and inhibition, Pharm. Res.8 (2011) 1831–1842; https://doi.org/10.1007/s11095-010-0362-910.1007/s11095-010-0362-921234659Search in Google Scholar

13. P. Alam, G. Rabbani, G. Badr, B. M. Badr and R. H. Khan, The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase, Cell Biochem. Biophys. 71 (2015) 1199–1206; https://doi.org/10.1007/s12013-014-0329-210.1007/s12013-014-0329-225424356Search in Google Scholar

14. E. Mateos-Diaz, S. Amara, A. Roussel, S. Longhi, C. Cambillau and F. Carrière, Probing conformational changes and interfacial recognition site of lipases with surfactants and inhibitors, Methods Enzymol.583 (2017) 279–307; https://doi.org/10.1016/bs.mie.2016.09.04010.1016/bs.mie.2016.09.04028063495Search in Google Scholar

15. I. I. Hamdan, F. Afifi and M. O. Taha, In vitro alpha amylase inhibitory effect of some clinically-used drugs, Pharmazie59 (2004) 799–801.Search in Google Scholar

16. Y. Bustanji, M. Mohammad Mohammad, M. Hudaib, K. Tawaha, I. M. Al-Masri, H. S. Al Khatib, A. Issa and F. Q. Alali, Screening of some medicinal plants for their pancreatic lipase inhibitory potential, Jordan J. Pharm. Sci.4 (2011) 81–88.Search in Google Scholar

17. FRED (version 2.2.5) 2009. OpenEye Scientific Software (www.eyesopen.com), Santa Fe, USA.Search in Google Scholar

18. S. Habtemariam, The anti-obesity potential of sigmoidin A, Pharm. Biol. 50 (2012) 1519–1522; https://doi.org/10.3109/13880209.2012.68883810.3109/13880209.2012.68883822978690Search in Google Scholar

19. M. Karamać and R. Amarowicz, Inhibition of pancreatic lipase by phenolic acids-examination in vitro, Z. Naturforsch. C.51 (1996) 903–905.10.1515/znc-1996-11-12229031529Search in Google Scholar

20. J. A. van Diepen, I. O. C. M. Vroegrijk, J. F. P. Berbée, S. E. Shoelson, J. A. Romijn, L. M. Havekes, P. C. N. Rensen and P. J. Voshol, Aspirin reduces hypertriglyceridemia by lowering VLDL-triglyceride production in mice fed a high-fat diet, Am. J. Physiol. Endocrinol. Metab.301 (2011) 1099–1107; https://doi.org/10.1152/ajpendo.00185.201110.1152/ajpendo.00185.2011411635321862721Search in Google Scholar

21. A. Kumarand and S. Chauhan, Monte Carlo method based QSAR modeling of natural lipase inhibitors using hybrid optimal descriptors, SAR QSAR Environ. Res.28 (2017) 179–197; https://doi.org/10.1080/1062936X.2017.129372910.1080/1062936X.2017.129372928271914Search in Google Scholar

22. R. Emral, O. Köseoğlulari, V. Tonyukuk, A. R. Uysal, N. Kamel and D. Corapcioğlu, The effect of short-term glycemic regulation with gliclazide and metformin on postprandial lipemia, Exp. Clin. Endocrinol. Diabetes113 (2005) 80–84; https://doi.org/10.1055/s-2004-83053610.1055/s-2004-83053615772898Search in Google Scholar

23. L. S. Chupak, X. Zheng, S. Hu, Y. Huang, M. Ding, M. A. Lewis, R. S. Westphal, Y. Blat, A. McClure and R. G. Gentles, Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase, Bioorg. Med. Chem. 24 (2016) 1455–1468; https://doi.org/10.1016/j.bmc.2016.02.00610.1016/j.bmc.2016.02.00626917221Search in Google Scholar

24. F. J. Janssen, H. Deng, M. P. Baggelaar, M. Allarà, T. van der Wel, H. den Dulk, A. Ligresti, A. C. van Esbroeck, R. McGuire, V. Di Marzo, H. S. Overkleeft and M. van der Stelt, Discovery of glycine sulfonamides as dual inhibitors of sn-1-diacylglycerol lipase α and α/β-hydrolase domain 6, J. Med. Chem.57 (2014) 6610–6622; https://doi.org/10.1021/jm500681z10.1021/jm500681z24988361Search in Google Scholar

25. J. Kim, Y. S. Lee, C. S. Kim and J. S. Kim, Betulinic acid has an inhibitory effect on pancreatic lipase and induces adipocyte lipolysis, Phytother. Res. 26 (2012) 1103–1106; https://doi.org/10.1002/ptr.367210.1002/ptr.3672Search in Google Scholar

26. Y. Bustanji, I. M. Al-Masri, M. Mohammad, M. Hudaib, K. Tawaha, H. Tarazi and H. S. Alkhatib, Pancreatic lipase inhibition activity of trilactoneterpenes of Ginkgo biloba, J. Enzyme Inhib. Med. Chem.26 (2011) 453–459; https://doi.org/10.3109/14756366.2010.52550910.3109/14756366.2010.525509Search in Google Scholar

27. Y. M. Al-Hiari, V. N. Kasabri, A. K. Shakya, M. H. Alzweiri, F. U. Afifi, Y. K. Bustanji and I. M. Al-Masri, Fluoroquinolones: novel class of gastrointestinal dietary lipid digestion and absorption inhibitors, Med. Chem. Res. 23 (2014) 3336–3346; https://doi.org/10.1007/s00044-014-0913-410.1007/s00044-014-0913-4Search in Google Scholar

28. P. Hadváry, W. Sidler, W. Meister, W. Vetter and H. Wolfer, The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase, J. Biol. Chem.266 (1991) 2021–2027.10.1016/S0021-9258(18)52203-1Search in Google Scholar

29. C. Schouand and N. H. Heegaard, Recent applications of affinity interactions in capillary electrophoresis, Electrophoresis27 (2006) 44–59; https://doi.org/10.1002/elps.20050051610.1002/elps.200500516716365416315182Search in Google Scholar

30. A. Lookene, N. Skottova and G. Olivecrona, Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat), Eur. J. Biochem. 222 (1994) 395–403; https://doi.org/10.1111/j.1432-1033.1994.tb18878.x10.1111/j.1432-1033.1994.tb18878.x8020477Search in Google Scholar

31. H. Lee, S. Cao, K. E. Hevener, L. Truong, J. L. Gatuz, K. Patel, A. K. Ghosh and M. E. Johnson, Synergistic inhibitor binding to the papain-like protease of human SARS corona virus: mechanistic and inhibitor design implications, Chem. Med. Chem.8 (2013) 1361–1372; https://doi.org/10.1002/cmdc.20130013410.1002/cmdc.201300134395498623788528Search in Google Scholar

32. C. W. Murray and T. L. Blundell, Structural biology in fragment-based drug design, Curr. Opin. Struct. Biol.20 (2010) 497–507; https://doi.org/10.1016/j.sbi.2010.04.00310.1016/j.sbi.2010.04.00320471246Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo