1. bookVolumen 68 (2018): Edición 4 (December 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Chloroquine Urea Derivatives: Synthesis and Antitumor Activity in Vitro

Publicado en línea: 03 Oct 2018
Volumen & Edición: Volumen 68 (2018) - Edición 4 (December 2018)
Páginas: 471 - 483
Recibido: 11 Sep 2018
Aceptado: 14 Sep 2018
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. T. L. Lemke, D. A. Williams, V. F. Roche and S. W. Zito, Foye’s Principles of Medicinal Chemistry, 6th ed., Wolters Kluwer (Health)/Lippincott Williams & Wilkins, Philadelphia 2008.Search in Google Scholar

2. E. Hempelmann, Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors, Parasitol. Res. 100 (2007) 671-676; https://doi.org/10.1007/s00436-006-0313-x10.1007/s00436-006-0313-x17111179Search in Google Scholar

3. C. Verbaanderd, H. Maes, M. B. Schaaf, V. P. Sukhatme, P. Pantziarka, V. Sukhatme, P. Agostinis and G. Bouche, Repurposing drugs in oncology (ReDO) - chloroquine and hydroxychloroquine as anti-cancer agents, eCancer 11 (2017) Article ID 781; https://doi.org/10.3332/ecancer.2017.78110.3332/ecancer.2017.781571803029225688Search in Google Scholar

4. H. Monma, Y. Iida, T. Moritani, T. Okimoto, R. Tanino, Y. Tajima and M. Harada, Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells, PLoS One 13 (2018) Article ID e0193990; https://doi.org/10.1371/journal.pone.019399010.1371/journal.pone.0193990584181129513749Search in Google Scholar

5. V. R. Solomon and H. Lee, Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies, Eur. J. Pharmacol. 625 (2009) 220-233; https://doi.org/10.1016/j.ejphar.2009.06.06310.1016/j.ejphar.2009.06.06319836374Search in Google Scholar

6. A. K. Abdel- Aziz, S. Shouman, E. El-Demerdash, M. Elgendy and A. B. Abdel-Naim, Chloroquine as a promising adjuvant chemotherapy together with sunitinib, Sci. Proc. 1 (2014) Article ID e384;https://doi.org/10.14800/sp.38410.14800/sp.384Search in Google Scholar

7. F. Liu, Y. Shang and S-Z. Chen, Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitro, Acta Pharmacol. Sin. 35 ( 2014) 6 45-652; https://doi.org/10.1038/aps.2014.310.1038/aps.2014.3481403824727941Search in Google Scholar

8. A. R. Choi, J. H. Kim, Y. H. Woo, H. S. Kim and S. Yoon, Anti-malarial drugs primaquine and chloroquine have different sensitization effects with anti-mitotic drugs in resistant cancer cells, Anticancer Res. 36 (2016) 1641-1648.Search in Google Scholar

9. A. Ganguli, D. Choudhury, S. Datta, S. Bhattacharya and G. Chakrabarti, Inhibition of autophagy by chloroquine potentiates synergistically anti-cancer property of artemisinin by promoting ROS dependent apoptosis, Biochimie 107 (2014) 338-349; https://doi.org/10.1016/j.biochi.2014.10.00110.1016/j.biochi.2014.10.00125308836Search in Google Scholar

10. L. Liu, C. Han, H. Yu, W. Zhu, H. Cui, L. Zheng, C. Zhang and L. Yue, Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrialmediated apoptosis, Oncol. Rep. 39 (2018) 2807-2816; https://doi.org/10.3892/or.2018.636310.3892/or.2018.636329658606Search in Google Scholar

11. F. Wang, J. Tang, P. Li, S. Si, H. Yu, X. Yang, J. Tao, Q. Lv, M. Gu, H. Yang and Z. Wang, Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis, Cell. Physiol. Biochem. 45 (2018) 54-66; https://doi.org/10.1159/00048622210.1159/00048622229316551Search in Google Scholar

12. J. M. Mulcahy Levy, S. Zahedi, A. M. Griesinger, A. Morin, K. D. Davies, D. L. Aisner, B. K. Kleinschmidt- DeMasters, B. E. Fitzwalter, M. L. Goodall, J. Thorburn, V. Amani, A. M. Donson, D. K. Birks, D. M. Mirsky, T. C. Hankinson, M. H. Handler, A. L. Green, R. Vibhakar, N. K. Foreman and A. Thorburn, Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors, eLife 6 (2017) Article ID e19671; https://doi.org/10.7554/eLife.19671.00110.7554/eLife.19671.001Search in Google Scholar

13. T. Kimura, Y. Takabatake, A. Takahashi and Y. Isaka, Chloroquine in cancer therapy: A doubleedged sword of autophagy, Cancer Res. 73 (2013) 3-7; https://doi.org/10.1158/0008-5472Search in Google Scholar

14. S. Edaye, D. Tazoo, D. Scott Bohle and E. Georges, 3-Halo chloroquine derivatives overcome Plasmodium falciparum chloroquine resistance transporter-mediated drug resistance in P. falciparum, Antimicrob. Agents Chemother. 59 (2015) 7891-7893; https://doi.org/10.1128/AAC.01139-1510.1128/AAC.01139-15464915626438496Search in Google Scholar

15. S-J. Yeo, D-X. Liu, H. S. Kim and H. Park, Anti-malarial effect of novel chloroquine derivatives as agents for the treatment of malaria, Malaria J. 16 (2017) Article ID 80 (9 pages); https://doi.org/10.1186/s12936-017-1725-z10.1186/s12936-017-1725-z531621328212631Search in Google Scholar

16. O. M. Yvette, S. F. Malan, D. Taylor, E. Kapp and J. Joubert, Adamantane amine-linked chloroquinoline derivatives as chloroquine resistance modulating agents in Plasmodium falciparum, Bioorg. Med. Chem. Lett. 28 (2018) 1287-1291; https://doi.org/10.1016/j.bmcl.2018.03.02610.1016/j.bmcl.2018.03.02629559277Search in Google Scholar

17. E. A. Hall, J. E. Ramsey, Z. Peng, D. Hayrapetyan, V. Shkepu, B. O’Rourke, W. Geiger, K. Lam and C. F. Verschraegen, Novel organometallic chloroquine derivative inhibits tumor growth, J. Cell.Biochem. (2018) (in press); https://doi.org/10.1002/jcb.2678710.1002/jcb.2678729575007Search in Google Scholar

18. C. Teixeira, N. Vale, B. Pérez, A. Gomes, J. R. Gomes, P. Gomes, “Recycling” classical drugs for malaria, Chem. Rev. 114 (2014) 11164-11220; https://doi.org/10.1021/cr500123g10.1021/cr500123g25329927Search in Google Scholar

19. V. R. Solomon, C. Hu and H. Lee, Design and synthesis of chloroquine analogs with anti-breast cancer property, Eur. J. Med. Chem. 45 (2010) 3916-3923; https://doi.org/10.1016/j.ejmech.2010.05.04610.1016/j.ejmech.2010.05.04620561720Search in Google Scholar

20. B. C. Pérez, I. Fernandes, N. Mateus, C. Teixeira and P. Gomes, Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues, Bioorg. Med. Chem. Lett. 23 (2013) 6769-6772; https://doi.org/10.1016/j.bmcl.2013.10.02510.1016/j.bmcl.2013.10.02524184076Search in Google Scholar

21. M. Quiliano, A. Pabón, E. Moles, L. Bonilla-Ramirez, I. Fabing, K. Y. Fong, D. A. Nieto-Aco, D. W. Wright, J. C. Pizarro, A. Vettorazzi, A. López de Cerain, E. Deharo, X. Fernández-Busquets, G. Garavito, I. Aldana and S. Galiano, Structure-activity relationship of new antimalarial 1-aryl- 3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery, Eur. J. Med. Chem. 152 (2018) 489-514;https://doi.org/10.1016/j.ejmech.2018.04.03810.1016/j.ejmech.2018.04.03829754074Search in Google Scholar

22. F. M. Ferguson and N. S. Gray, Kinase inhibitors: the road ahead, Nature Rev. Drug Discov. 17 (2018) 353-377; https://doi.org/10.1038/nrd.2018.2110.1038/nrd.2018.2129545548Search in Google Scholar

23. V. Reddy, Organofluorine Compounds in Biology and Medicine, 1st ed., Elsevier, Amsterdam 2015.10.1016/B978-0-444-53748-5.00001-0Search in Google Scholar

24. B. Meunier, A. Robert, O. Dechy-Cabaret and F. Benoit-Vical, Dual Molecules Containing a Peroxide Derivative, Synthesis and Therapeutic Applications thereof, U. S. Pat. 20040038957A1, 26 Feb 2004.Search in Google Scholar

25. I. Kalčić, M. Zovko, M. Jadrijević-Mladar Takač, B. Zorc and I. Butula, Synthesis and reactions of some azolecarboxylic acid derivatives, Croat. Chem. Acta 76 (2003) 217-228.Search in Google Scholar

26. Z. Rajić, D. Hadjipavlou-Litina, E. Pontiki, M. Kralj, L. Šuman and B. Zorc, The novel ketoprofen amides - Synthesis and biological evaluation as antioxidants, lipoxygenase inhibitors and cytostatic agents, Chem. Biol. Drug. Des. 75 (2010) 641-652; https://doi.org/10.1111/j.1747-0285.2010.00963.x10.1111/j.1747-0285.2010.00963.x20337784Search in Google Scholar

27. L. Uzelac, Đ. Škalamera, K. Mlinarić-Majerski, N. Basarić and M. Kralj, Selective photocytotoxicity of anthrols on cancer stem-like cells: the effect of quinone methides or reactive oxygen species, Eur. J. Med. Chem. 137 (2017) 558-574; https://doi.org/10.1016/j.ejmech.2017.05.06310.1016/j.ejmech.2017.05.06328633106Search in Google Scholar

28. Chemicalize, 2017, ChemAxon Ltd., Budapest, Hungary; available from https://chemicalize.com/Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo