1. bookVolumen 68 (2018): Edición 3 (September 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Analysis of diclofenac in water samples using in situ derivatization-vortex-assisted liquid-liquid microextraction with gas chromatography-mass spectrometry

Publicado en línea: 04 Jul 2018
Volumen & Edición: Volumen 68 (2018) - Edición 3 (September 2018)
Páginas: 313 - 324
Aceptado: 09 Mar 2018
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. N. A. Alygizakis, P. Gago-Ferrero, V. L. Borova, A. Pavlidou, I. Hatzianestis and N. S. Thomaidis, Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater, Sci. Total Environ. 541 (2016) 1097–1105; https://doi.org/10.1016/j.scitotenv.2015.09.14510.1016/j.scitotenv.2015.09.145Search in Google Scholar

2. J. Martín, M. D. Camacho-Muñoz, J. L. Santos, I. Aparicio and E. Alonso, Distribution and temporal evolution of pharmaceutically active compounds alongside sewage sludge treatment. Risk assessment of sludge application onto soils, J. Environ. Manag. 102 (2012) 18–25; https://doi.org/10.1016/j.jenvman.2012.02.02010.1016/j.jenvman.2012.02.020Search in Google Scholar

3. A. Tauxe-Wuersch, L. F. de Alencastro, D. Grandjean and J. Tarradellas, Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment, Water Res. 39 (2005) 1761–1772; https://doi.org/10.1016/j.watres.2005.03.00310.1016/j.watres.2005.03.003Search in Google Scholar

4. T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett. 131 (2002) 5–17; https://doi.org/10.1016/S0378-4274(02)00041-310.1016/S0378-4274(02)00041-3Search in Google Scholar

5. T. A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers, Water Res. 32 (1998) 3245–3260; https://doi.org/10.1016/S0043-1354(98)00099-210.1016/S0043-1354(98)00099-2Search in Google Scholar

6. P. M. Thomas and G. D. Foster, Determination of nonsteroidal anti-inflammatory drugs, caffeine, and triclosan in wastewater by gas chromatography-mass spectrometry, J. Environ. Sci. Health A39 (2004) 1969–1978; https://doi.org/10.1080/03601234.2015.97560710.1080/03601234.2015.97560725587780Search in Google Scholar

7. M. J. Martínez Bueno, M. J. Gomez, S. Herrera, M. D. Hernando, A. Agüera and A. R. Fernández-Alba, Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring, Environ. Pollut. 164 (2012) 267–273; https://doi.org/10.1016/j.envpol.2012.01.03810.1016/j.envpol.2012.01.03822387188Search in Google Scholar

8. Q. Bu, B. Wang, J. Huang, S. Deng and G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: A review, J. Hazard. Mater. 262 (2013) 189–211; https://doi.org/10.1016/j.jhazmat.2013.08.04010.1016/j.jhazmat.2013.08.04024036145Search in Google Scholar

9. T. E. Félix-Cañedo, J. C. Durán-Álvarez and B. Jiménez-Cisneros, The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources, Sci. Total Environ. 454455 (2013) 109–118; https://doi.org/10.1016/j.scitotenv.2013.02.08810.1016/j.scitotenv.2013.02.08823542484Search in Google Scholar

10. U. Jux, R. M. Baginski, H. G. Arnold, M. Krönke and P. N. Seng, Detection of pharmaceutical contaminations of river, pond, and tap water from Cologne (Germany) and surroundings, Int. J. Hygiene Environ. Health205 (2002) 393–398; https://doi.org/10.1078/1438-4639-0016610.1078/1438-4639-0016612173539Search in Google Scholar

11. R. López-Serna, A. Jurado, E. Vázques-Sune, J. Carrera, M. Petrovic and D. Barceló, Occurrence of 95 pharmaceuticals and transformation products in urban ground waters underlying the metropolis of Barcelona, Spain, Environ. Pollut. 174 (2013) 305–315; https://doi.org/10.1016/j.envpol.2012.11.02210.1016/j.envpol.2012.11.02223302545Search in Google Scholar

12. N. Vieno and M. Sillanpää, Fate of diclofenac in municipal wastewater treatment plant-A review, Environ. Int.69 (2014) 28–39; https://doi.org/10.1016/j.envint.2014.03.02110.1016/j.envint.2014.03.02124791707Search in Google Scholar

13. M. Česen and E. Heath, Disk-based solid phase extraction for the determination of diclofenac and steroidal estrogens E1, E2 and EE2 listed in the WFD watch list by GC-MS, Sci. Total Environ. 590-591 (2017) 832–837; https://doi.org/10.1016/j.scitotenv.2017.02.22210.1016/j.scitotenv.2017.02.22228284637Search in Google Scholar

14. A. Sarafraz-Yazdi and A. Amiri, Liquid-phase microextraction, Trends Anal. Chem. 29 (2010) 1–14; https://doi.org/10.1016/j.trac.2009.10.00310.1016/j.trac.2009.10.003Search in Google Scholar

15. M. D. Gil García, F. Cañada Cañada, M. J. Culzoni, L. Vera Candioti, G. G. Siano, H. C. Goicoechea and M. Martínez Galera, Chemometric tools improving the determination of anti-inflammatory and antiepileptic drugs in river and wastewater by solid-phase microextraction and liquid chromatography diode array detection, J. Chromatogr. A1216 (2009) 5489–5496; https://doi.org/10.1016/j.chroma.2009.05.07310.1016/j.chroma.2009.05.07319535087Search in Google Scholar

16. P. L. Kole, J. Millership and J. C. McElnay, Stir bar sorptive extraction of diclofenac from liquid formulations: A proof of concept study, J. Pharm. Biomed. Anal.54 (2011) 701–710; https://doi.org/10.1016/j.jpba.2010.10.02510.1016/j.jpba.2010.10.02521095087Search in Google Scholar

17. M. R. Payána, M. Á. B. López, R. Fernández-Torres, M. C. Mochóna and J. L. G. Ariza, Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters, Talanta82 (2010) 854–858; https://doi.org/10.1016/j.talanta.2010.05.02210.1016/j.talanta.2010.05.02220602981Search in Google Scholar

18. C. H. Lee, Y. Shin, M. W. Nam, K. M. Jeong and J. Lee, A new analytical method to determine non-steroidal anti-inflammatory drugs in surface water using in situ derivatization combined with ultrasound-assisted emulsification microextraction followed by gas chromatography-mass spectrometry, Talanta129 (2014) 552–559; https://doi.org/10.1016/j.talanta.2014.06.02710.1016/j.talanta.2014.06.02725127632Search in Google Scholar

19. D. Ge and H. K. Lee, Zeolite imidazolate frameworks 8 as sorbent and its application to sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction for fast analysis of acidic drugs in environmental water samples, J. Chromatogr. A1257 (2012) 19–24; https://doi.org/10.1016/j.chroma.2012.08.03210.1016/j.chroma.2012.08.03222926055Search in Google Scholar

20. A. Sarafraz-Yazdi, H. Assadi, Z. Eshaghi and N. M. Danesh, Pre-concentration of non-steroidal anti-inflammatory drugs in water using dispersive liquid-liquid and single-drop microextraction with high-performance liquid chromatography, J. Sep. Sci.35 (2012) 2476–2483; https://doi.org/10.1002/jssc.20110109910.1002/jssc.20110109922997034Search in Google Scholar

21. W. Y. Chang, C. Y. Wang, J. L. Jan, Y. S. Lo and C. H. Wu, Vortex-assisted liquid-liquid microextraction coupled with derivatization for the fluorometric determination of aliphatic amines, J. Chromatogr. A1248 (2012) 41–47; https://doi.org/10.1016/j.chroma.2012.05.09410.1016/j.chroma.2012.05.09422727326Search in Google Scholar

22. U. S. Environmental Protection Agency, EPA Method 3535A (SW-846), Solid Phase Extraction (SPE), Revision 1, US EPA, Washington (DC), February 2007; https://www.epa.gov/sites/production/files/2015-12/documents/3535a.pdf; last access February 22, 2018Search in Google Scholar

23. S. Ozcan, A. Tor and M. E. Aydin, Application of ultrasound-assisted emulsification-micro-extraction for the analysis of organochlorine pesticides in waters, Water Res.43 (2009) 4269–4277; https://doi.org/10.1016/j.watres.2009.06.02410.1016/j.watres.2009.06.02419577269Search in Google Scholar

24. J. Antony and R. K. Roy, Improving the process quality using statistical design of experiments: a case study, Qual. Assur. 6 (1999) 87–95; https://doi.org/10.1080/10529419927788810.1080/10529419927788810386331Search in Google Scholar

25. ISO/IEC 17025:2005 Section 5.4., Test and Calibration Methods and Method Validation, International Organization for Standardization, Geneva 2005, https://www.iso.org/obp/ui/#iso:std:iso-iec:17025:ed-2:v1:en; last access February 22, 2018Search in Google Scholar

26. L. H. Keith, W. Crummett, J. Deegan, R. A. Libby, J. K. Taylor and G. Wentler, Principles of environmental analysis, Anal. Chem. 55 (1983) 2210–2218; https://doi.org/10.1021/ac00264a00310.1021/ac00264a003Search in Google Scholar

27. Z. Yu, S. Peldszus and P. M. Huck, Optimizing gas chromatographic–mass spectrometric analysis of selected pharmaceuticals and endocrine-disrupting substances in water using factorial experimental design, J. Chromatogr. A1148 (2007) 65–77; https://doi.org/10.1016/j.chroma.2007.02.04710.1016/j.chroma.2007.02.04717391686Search in Google Scholar

28. A. A. Asgharinezhad, N. Mollazadeh, H. Ebrahimzadeh, F. Mirbabaei and N. Shekari, Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water, J. Chromatogr. A.1338 (2014) 1–8; https://doi.org/10.1016/j.chroma.2014.02.02710.1016/j.chroma.2014.02.02724636757Search in Google Scholar

29. U. Kotowska, J. Kapelewska and J. Sturgulewska, Determination of phenols and pharmaceuticals in municipal wastewaters from Polish treatment plants by ultrasound-assisted emulsification-microextraction followed by GC-MS, Environ. Sci. Pollut. Res.21 (2014) 660–673; https://doi.org/10.1007/s11356-013-1904-610.1007/s11356-013-1904-6387742723818073Search in Google Scholar

30. N. N. Naing, S. F. Yau Li and H. K. Lee, Graphene oxide-based dispersive solid-phase extraction combined with in situ derivatization and gas chromatography–mass spectrometry for the determination of acidic pharmaceuticals in water, J. Chromatogr. A1426 (2015) 69–76; https://doi.org/10.1016/j.chroma.2015.11.07010.1016/j.chroma.2015.11.07026684593Search in Google Scholar

31. A. Zgoła-Grześkowiak, Application of DLLME to isolation and concentration of non-steroidal anti-inflammatory drugs in environmental water samples, Chromatographia72 (2010) 671–678; https://doi.org/10.1365/s10337-010-1702-y10.1365/s10337-010-1702-ySearch in Google Scholar

32. L. Xu, M. Jiang and G. Li, Injection port derivatization following sonication-assisted ion-pair liquid–liquid extraction of nonsteroidal anti-inflammatory drugs, Anal. Chim. Acta666 (2010) 45–50; https://doi.org/10.1016/j.aca.2010.03.05210.1016/j.aca.2010.03.05220433963Search in Google Scholar

33. G. G. Noche, M. E. Laespada, J. L. P. Pavón, B. M. Cordero and S. M. Lorenzo, In situ aqueous derivatization and determination of non-steroidal anti-inflammatory drugs by salting-out-assisted liquid-liquid extraction and gas chromatography-mass spectrometry, J. Chromatogr. A1218 (2011) 6240–6247; https://doi.org/10.1016/j.chroma.2011.06.11210.1016/j.chroma.2011.06.11221820666Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo