This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Gebert LF, MacRae IJ. Regulation of MicroRNA Function in Animals. Ann Intern Med 2019; 124 (11): 21–37.GebertLFMacRaeIJ.Regulation of MicroRNA Function in Animals. Ann Intern Med2019; 124 (11): 21–37.Search in Google Scholar
Kozomara A, Griffiths-Jones S. MiRBase: Annotating High Confidence MicroRNAs Using Deep Sequencing Data. Nucleic Acids Res 2014; 42 (D1): D68.KozomaraAGriffiths-JonesS.MiRBase: Annotating High Confidence MicroRNAs Using Deep Sequencing Data. Nucleic Acids Res2014; 42 (D1): D68.Search in Google Scholar
Shang R, Lee S, Senavirathne G, Lai EC. MicroRNAs in Action: Biogenesis, Function and Regulation. Nat Rev Genet 2023; 24 (12): 816–833.ShangRLeeSSenavirathneGLaiEC.MicroRNAs in Action: Biogenesis, Function and Regulation. Nat Rev Genet2023; 24 (12): 816–833.Search in Google Scholar
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol 2018; 9: 402.O’BrienJHayderHZayedYPengC.Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol2018; 9: 402.Search in Google Scholar
Friedman RC, Farh KK, Burge CB, Bartel DP. Most Mammalian MRNAs Are Conserved Targets of MicroRNAs. Genome Res 2009; 19 (1): 92–105.FriedmanRCFarhKKBurgeCBBartelDP.Most Mammalian MRNAs Are Conserved Targets of MicroRNAs. Genome Res2009; 19 (1): 92–105.Search in Google Scholar
Tanzer A, Stadler PF. Molecular Evolution of a MicroRNA Cluster. J Mol Biol 2004; 339 (2): 327–335.TanzerAStadlerPF.Molecular Evolution of a MicroRNA Cluster. J Mol Biol2004; 339 (2): 327–335.Search in Google Scholar
Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009; 136 (2): 215–233.BartelDP.MicroRNAs: Target Recognition and Regulatory Functions. Cell2009; 136 (2): 215–233.Search in Google Scholar
Nicholson AW. Ribonuclease III Mechanisms of Double-Stranded RNA Cleavage. Wiley Interdiscip Rev RNA 2014; 5 (1): 31–48.NicholsonAW.Ribonuclease III Mechanisms of Double-Stranded RNA Cleavage. Wiley Interdiscip Rev RNA2014; 5 (1): 31–48.Search in Google Scholar
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of Primary MicroRNAs by the Microprocessor Complex. Nature 2004; 432 (7014): 231–235.DenliAMTopsBBPlasterkRHKettingRFHannonGJ.Processing of Primary MicroRNAs by the Microprocessor Complex. Nature2004; 432 (7014): 231–235.Search in Google Scholar
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 Complex in Primary MicroRNA Processing. Genes Dev 2004; 18 (24): 3016–3027.HanJLeeYYeomKHKimYKJinHKimVN.The Drosha-DGCR8 Complex in Primary MicroRNA Processing. Genes Dev2004; 18 (24): 3016–3027.Search in Google Scholar
Kim B, Jeong K, Kim VN. Genome-Wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates. Mol Cell 2017; 66 (2): 258–269.e5.KimBJeongKKimVN.Genome-Wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates. Mol Cell2017; 66 (2): 258–269.e5.Search in Google Scholar
Stavast CJ, Erkeland SJ. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019; 8 (11): 1465.StavastCJErkelandSJ.The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells2019; 8 (11): 1465.Search in Google Scholar
Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol Cell 2016; 64 (2): 320–333.BroughtonJPLovciMTHuangJLYeoGWPasquinelliAE.Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol Cell2016; 64 (2): 320–333.Search in Google Scholar
Bukhari SIA, Truesdell SS, Lee S, Kollu S, Classon A, Boukhali M, Jain E, Mortensen RD, Yanagiya A, Sadreyev RI, et al. A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence. Mol Cell 2016; 61 (5): 760–773.BukhariSIATruesdellSSLeeSKolluSClassonABoukhaliMJainEMortensenRDYanagiyaASadreyevRIA Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence. Mol Cell2016; 61 (5): 760–773.Search in Google Scholar
Truesdell SS, Mortensen RD, Seo M, Schroeder JC, Lee JH, Letonqueze O, Vasudevan SV. MicroRNA-Mediated MRNA Translation Activation in Quiescent Cells and Oocytes Involves Recruitment of a Nuclear MicroRNP. Sci Rep 2012; 2 (1): 1–12.TruesdellSSMortensenRDSeoMSchroederJCLeeJHLetonquezeOVasudevanSV.MicroRNA-Mediated MRNA Translation Activation in Quiescent Cells and Oocytes Involves Recruitment of a Nuclear MicroRNP. Sci Rep2012; 2 (1): 1–12.Search in Google Scholar
Chalfie M, Horvitz HR, Sulston JE. Mutations That Lead to Reiterations in the Cell Lineages of C. Elegans. Cell 1981; 24 (1): 59–69.ChalfieMHorvitzHRSulstonJE.Mutations That Lead to Reiterations in the Cell Lineages of C. Elegans. Cell1981; 24 (1): 59–69.Search in Google Scholar
Markaki M, Tavernarakis N. Caenorhabditis Elegans as a Model System for Human Diseases. Curr Opin Biotechnol 2020; 63: 118–125.MarkakiMTavernarakisN.Caenorhabditis Elegans as a Model System for Human Diseases. Curr Opin Biotechnol2020; 63: 118–125.Search in Google Scholar
Lee RC, Feinbaum RL, Ambros V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993; 75 (5): 843–854.LeeRCFeinbaumRLAmbrosV.The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell1993; 75 (5): 843–854.Search in Google Scholar
Wightman B, Ha I, Ruvkun G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by Lin-4 Mediates Temporal Pattern Formation in C. Elegans. Cell 1993; 75 (5): 855–862.WightmanBHaIRuvkunG.Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by Lin-4 Mediates Temporal Pattern Formation in C. Elegans. Cell1993; 75 (5): 855–862.Search in Google Scholar
Reinhart BJ, Slack FJ, Basson M, Pasquienell AE, Bettnger JC, Rougvle AE, Horvitz HR, Ruvkun G. The 21-Nucleotide Let-7 RNA Regulates Developmental Timing in Caenorhabditis Elegans. Nature 2000; 403 (6772): 901–906.ReinhartBJSlackFJBassonMPasquienellAEBettngerJCRougvleAEHorvitzHRRuvkunG.The 21-Nucleotide Let-7 RNA Regulates Developmental Timing in Caenorhabditis Elegans. Nature2000; 403 (6772): 901–906.Search in Google Scholar
Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The Lin-41 RBCC Gene Acts in the C. Elegans Heterochronic Pathway between the Let-7 Regulatory RNA and the LIN-29 Transcription Factor. Mol Cell 2000; 5 (4): 659–669.SlackFJBassonMLiuZAmbrosVHorvitzHRRuvkunG.The Lin-41 RBCC Gene Acts in the C. Elegans Heterochronic Pathway between the Let-7 Regulatory RNA and the LIN-29 Transcription Factor. Mol Cell2000; 5 (4): 659–669.Search in Google Scholar
Wang Y, Tang X, Lu J. Convergent and Divergent Evolution of MicroRNA-Mediated Regulation in Metazoans. Biol Rev 2024; 99 (2): 525–545.WangYTangXLuJ.Convergent and Divergent Evolution of MicroRNA-Mediated Regulation in Metazoans. Biol Rev2024; 99 (2): 525–545.Search in Google Scholar
Fromm B, Høye E, Domanska D, Zhong X, Aparicio-Puerta E, Ovchinnikov V, Umu SU, Chabot PJ, Kang W, Aslanzadeh M, et al. MirGeneDB 2.1: Toward a Complete Sampling of All Major Animal Phyla. Nucleic Acids Res 2022; 50 (D1): D204–D210.FrommBHøyeEDomanskaDZhongXAparicio-PuertaEOvchinnikovVUmuSUChabotPJKangWAslanzadehMMirGeneDB 2.1: Toward a Complete Sampling of All Major Animal Phyla. Nucleic Acids Res2022; 50 (D1): D204–D210.Search in Google Scholar
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8.DexheimerPJCochellaL.MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol2020; 8.Search in Google Scholar
Moran Y, Agron M, Praher D, Technau U. The Evolutionary Origin of Plant and Animal MicroRNAs. Nature Ecol Evol 2017; 1 (3): 1–8.MoranYAgronMPraherDTechnauU.The Evolutionary Origin of Plant and Animal MicroRNAs. Nature Ecol Evol2017; 1 (3): 1–8.Search in Google Scholar
Edelbroek B, Kjellin J, Biryukova I, Liao Z, Lundberg T, Noegel AA, Eichinger L, Friedländer MR, Söderbom F. Evolution of MicroRNAs in Amoebozoa and Implications for the Origin of Multicellularity. Nucleic Acids Res 2024; 52 (6): 3121–3136.EdelbroekBKjellinJBiryukovaILiaoZLundbergTNoegelAAEichingerLFriedländerMRSöderbomF.Evolution of MicroRNAs in Amoebozoa and Implications for the Origin of Multicellularity. Nucleic Acids Res2024; 52 (6): 3121–3136.Search in Google Scholar
Sirotkin AV, Ovcharenko D, Grossmann R, Lauková M, Mlynček M. Identification of MicroRNAs Controlling Human Ovarian Cell Steroidogenesis via a Genome-Scale Screen. J Cell Physiol 2009; 219 (2): 415–420.SirotkinAVOvcharenkoDGrossmannRLaukováMMlynčekM.Identification of MicroRNAs Controlling Human Ovarian Cell Steroidogenesis via a Genome-Scale Screen. J Cell Physiol2009; 219 (2): 415–420.Search in Google Scholar
Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlynček M. Identification of MicroRNAs Controlling Human Ovarian Cell Proliferation and Apoptosis. J Cell Physiol 2010; 223 (1): 49–56.SirotkinAVLaukováMOvcharenkoDBrenautPMlynčekM.Identification of MicroRNAs Controlling Human Ovarian Cell Proliferation and Apoptosis. J Cell Physiol2010; 223 (1): 49–56.Search in Google Scholar
Jurkovicova D, Lukackova R, Magyerkova M, Kulcsar L, Krivjanska M, Krivjansky V, Chovanec M. MicroRNA Expression Profiling as Supportive Diagnostic and Therapy Prediction Tool in Chronic Myeloid Leukemia. Neoplasma 2015; 62 (6): 949–957.JurkovicovaDLukackovaRMagyerkovaMKulcsarLKrivjanskaMKrivjanskyVChovanecM.MicroRNA Expression Profiling as Supportive Diagnostic and Therapy Prediction Tool in Chronic Myeloid Leukemia. Neoplasma2015; 62 (6): 949–957.Search in Google Scholar
Jurkovicova D, Magyerkova M, Sestakova Z, Copakova L, Bella V, Konecny M, Krivjanska M, Kulcsar L, Chovanec M. Evaluation of Expression Profiles of MicroRNAs and Two Target Genes, FOXO3a and RUNX2, Effectively Supports Diagnostics and Therapy Predictions in Breast Cancer. Neoplasma 2016; 63 (6): 941–951.JurkovicovaDMagyerkovaMSestakovaZCopakovaLBellaVKonecnyMKrivjanskaMKulcsarLChovanecM.Evaluation of Expression Profiles of MicroRNAs and Two Target Genes, FOXO3a and RUNX2, Effectively Supports Diagnostics and Therapy Predictions in Breast Cancer. Neoplasma2016; 63 (6): 941–951.Search in Google Scholar
Sirotkin AV, Alexa R, Kišová G, Harrath AH, Alwasel S, Ovcharenko D, Mlynček M. MicroRNAs Control Transcription Factor NF-KB (P65) Expression in Human Ovarian Cells. Funct Integr Genomics 2015; 15 (3): 271–275.SirotkinAVAlexaRKišováGHarrathAHAlwaselSOvcharenkoDMlynčekM.MicroRNAs Control Transcription Factor NF-KB (P65) Expression in Human Ovarian Cells. Funct Integr Genomics2015; 15 (3): 271–275.Search in Google Scholar
Jurkovicova D, Magyerkova M, Kulcsar L, Krivjanska M, Krivjansky V, Gibadulinova A, Oveckova I, Chovanec M. MiR-155 as a Diagnostic and Prognostic Marker in Hematological and Solid Malignancies. Neoplasma 2014; 61 (3): 241–251.JurkovicovaDMagyerkovaMKulcsarLKrivjanskaMKrivjanskyVGibadulinovaAOveckovaIChovanecM.MiR-155 as a Diagnostic and Prognostic Marker in Hematological and Solid Malignancies. Neoplasma2014; 61 (3): 241–251.Search in Google Scholar
Gurianova V, Stroy D, Ciccocioppo R, Gasparova I, Petrovic D, Soucek M, Dosenko V, Kruzliak P. Stress Response Factors as Hub-Regulators of MicroRNA Biogenesis: Implication to the Diseased Heart. Cell Biochem Funct 2015; 33 (8): 509–518.GurianovaVStroyDCiccocioppoRGasparovaIPetrovicDSoucekMDosenkoVKruzliakP.Stress Response Factors as Hub-Regulators of MicroRNA Biogenesis: Implication to the Diseased Heart. Cell Biochem Funct2015; 33 (8): 509–518.Search in Google Scholar
Gardlik R, Celec P, Bernadic M. Targeting Angiogenesis for Cancer (Gene) Therapy. Bratisl Lek Listy 2011; 112 (8): 428–434. Tanzer A, Stadler PF. Molecular Evolution of a MicroRNA Cluster. J Mol Biol 2004; 339 (2): 327–335.GardlikRCelecPBernadicM.Targeting Angiogenesis for Cancer (Gene) Therapy. Bratisl Lek Listy2011; 112 (8): 428–434. Tanzer A, Stadler PF. Molecular Evolution of a MicroRNA Cluster. J Mol Biol 2004; 339 (2): 327-335.Search in Google Scholar
Hatok J, Kmet’ová Sivoňová M, Babušíková E, Kliková K, Richterová R, Račay P. Využitie kvantitatívnej PCR techniky na profilovanie miRNA nádorových chorôb mozgu. Molekulová biológia vybraných nádorových ochorení a nové trendy pri ich diagnostike a liečbe. 2011; 5–9.HatokJKmet’ová SivoňováMBabušíkováEKlikováKRichterováRRačayP.Využitie kvantitatívnej PCR techniky na profilovanie miRNA nádorových chorôb mozgu. Molekulová biológia vybraných nádorových ochorení a nové trendy pri ich diagnostike a liečbe. 2011; 5–9.Search in Google Scholar
Lasabová Z, Vazan M, Zibolenova J, Svecova I. Overexpression of MiR-21 and MiR-122 in Preeclamptic Placentas. Neuro Endocrinol Lett 2015; 36 (7): 695–699.LasabováZVazanMZibolenovaJSvecovaI.Overexpression of MiR-21 and MiR-122 in Preeclamptic Placentas. Neuro Endocrinol Lett2015; 36 (7): 695–699.Search in Google Scholar
Sarlinova M, Halasa M, Mistuna D, Musak L, Iliev R, Slaby O, Mazuchova J, Valentova V, Plank L, Halasova E. MiR-21, MiR-221 and MiR-150 Are Deregulated in Peripheral Blood of Patients with Colorectal Cancer. Anticancer Res 2016; 36 (10): 5449–5454.SarlinovaMHalasaMMistunaDMusakLIlievRSlabyOMazuchovaJValentovaVPlankLHalasovaE.MiR-21, MiR-221 and MiR-150 Are Deregulated in Peripheral Blood of Patients with Colorectal Cancer. Anticancer Res2016; 36 (10): 5449–5454.Search in Google Scholar
Holubekova V, Mendelova A, Jasek K, Mersakova S, Zubor P, Lasabova Z. Epigenetic Regulation by DNA Methylation and MiRNA Molecules in Cancer. Future Oncology 2017; 13 (25): 2217–2222.HolubekovaVMendelovaAJasekKMersakovaSZuborPLasabovaZ.Epigenetic Regulation by DNA Methylation and MiRNA Molecules in Cancer. Future Oncology2017; 13 (25): 2217–2222.Search in Google Scholar
Holubekova V, Kolkova Z, Grendar M, Brany D, Dvorska D, Stastny I, Jagelkova M, Zelinova K, Samec M, Liskova A, et al. Pathway Analysis of Selected Circulating MiRNAs in Plasma of Breast Cancer Patients: A Preliminary Study. Int J Mol Sci 2020; 21 (19): 7288.HolubekovaVKolkovaZGrendarMBranyDDvorskaDStastnyIJagelkovaMZelinovaKSamecMLiskovaAPathway Analysis of Selected Circulating MiRNAs in Plasma of Breast Cancer Patients: A Preliminary Study. Int J Mol Sci2020; 21 (19): 7288.Search in Google Scholar
Kolkova Z, Holubekova V, Grendar M, Nachajova M, Zubor P, Pribulova T, Loderer D, Zigo I, Biringer K, Hornakova A. Association of Circulating MiRNA Expression with Preeclampsia, Its Onset, and Severity. Diagnostics 2021; 11 (3): 476.KolkovaZHolubekovaVGrendarMNachajovaMZuborPPribulovaTLodererDZigoIBiringerKHornakovaA.Association of Circulating MiRNA Expression with Preeclampsia, Its Onset, and Severity. Diagnostics2021; 11 (3): 476.Search in Google Scholar
Kudelova E, Holubekova V, Grendar M, Kolkova Z, Samec M, Vanova B, Mikolajcik P, Smolar M, Kudela E, Laca L, et al. Circulating MiRNA Expression over the Course of Colorectal Cancer Treatment. Oncol Lett 2022; 23 (1).KudelovaEHolubekovaVGrendarMKolkovaZSamecMVanovaBMikolajcikPSmolarMKudelaELacaLCirculating MiRNA Expression over the Course of Colorectal Cancer Treatment. Oncol Lett2022; 23 (1).Search in Google Scholar
Krivosova M, Adamcakova J, Kaadt E, Mumm BH, Dvorska D, Brany D, Dankova Z, Dohal M, Samec M, Ferencova N, et al. The VEGF Protein Levels, MiR-101-3p, and MiR-122-5p Are Dysregulated in Plasma from Adolescents with Major Depression. J Affect Disord 2023; 334: 60–68.KrivosovaMAdamcakovaJKaadtEMummBHDvorskaDBranyDDankovaZDohalMSamecMFerencovaNThe VEGF Protein Levels, MiR-101-3p, and MiR-122-5p Are Dysregulated in Plasma from Adolescents with Major Depression. J Affect Disord2023; 334: 60–68.Search in Google Scholar
Benko J, Sarlinova M, Mikusova V, Bolek T, Pec MJ, Halasova E, Galajda P, Samos M, Mokan M. MiR-126 and MiR-146a as Markers of Type 2 Diabetes Mellitus: A Pilot Study. Bratisl Lek Listy 2023; 124 (7): 527–533.BenkoJSarlinovaMMikusovaVBolekTPecMJHalasovaEGalajdaPSamosMMokanM.MiR-126 and MiR-146a as Markers of Type 2 Diabetes Mellitus: A Pilot Study. Bratisl Lek Listy2023; 124 (7): 527–533.Search in Google Scholar
Evin D, Evinová A, Baranovičová E, Šarlinová M, Jurečeková J, Kaplán P, Poláček H, Halašová E, Dušenka R, Briš L, et al. Integrative Metabolomic Analysis of Serum and Selected Serum Exosomal MicroRNA in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2024; 25 (5): 2630.EvinDEvinováABaranovičováEŠarlinováMJurečekováJKaplánPPoláčekHHalašováEDušenkaRBrišLIntegrative Metabolomic Analysis of Serum and Selected Serum Exosomal MicroRNA in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci2024; 25 (5): 2630.Search in Google Scholar
Samec M, Liskova A, Kubatka P, Uramova S, Zubor P, Samuel SM, Zulli A, Pec M, Bielik T, Biringer K, et al. The Role of Dietary Phytochemicals in the Carcinogenesis via the Modulation of MiRNA Expression. J Cancer Res Clin Oncol 2019; 145 (7): 1665–1679.SamecMLiskovaAKubatkaPUramovaSZuborPSamuelSMZulliAPecMBielikTBiringerKThe Role of Dietary Phytochemicals in the Carcinogenesis via the Modulation of MiRNA Expression. J Cancer Res Clin Oncol2019; 145 (7): 1665–1679.Search in Google Scholar
Zubor P, Kubatka P, Kajo K, Dankova Z, Polacek H, Bielik T, Kudela E, Samec M, Liskova A, Vlcakova D, et al. Why the Gold Standard Approach by Mammography Demands Extension by Multiomics? Application of Liquid Biopsy MiRNA Profiles to Breast Cancer Disease Management. Int J Mol Sci 2019; 20 (12): 2878.ZuborPKubatkaPKajoKDankovaZPolacekHBielikTKudelaESamecMLiskovaAVlcakovaDWhy the Gold Standard Approach by Mammography Demands Extension by Multiomics? Application of Liquid Biopsy MiRNA Profiles to Breast Cancer Disease Management. Int J Mol Sci2019; 20 (12): 2878.Search in Google Scholar
Zubor P, Kubatka P, Dankova Z, Gondova A, Kajo K, Hatok J, Samec M, Jagelkova M, Krivus S, Holubekova V, et al. MiRNA in a Multiomic Context for Diagnosis, Treatment Monitoring and Personalized Management of Metastatic Breast Cancer. Future Oncol 2018; 14 (18): 1847–1867.ZuborPKubatkaPDankovaZGondovaAKajoKHatokJSamecMJagelkovaMKrivusSHolubekovaVMiRNA in a Multiomic Context for Diagnosis, Treatment Monitoring and Personalized Management of Metastatic Breast Cancer. Future Oncol2018; 14 (18): 1847–1867.Search in Google Scholar
Varghese E, Liskova A, Kubatka P, Samuel SM, Büsselberg D. Anti-Angiogenic Effects of Phytochemicals on MiRNA Regulating Breast Cancer Progression. Biomolecules 2020; 10 (2).VargheseELiskovaAKubatkaPSamuelSMBüsselbergD.Anti-Angiogenic Effects of Phytochemicals on MiRNA Regulating Breast Cancer Progression. Biomolecules2020; 10 (2).Search in Google Scholar
Hornakova A, Kolkova Z, Holubekova V, Loderer D, Lasabova Z, Biringer K, Halasova E. Diagnostic Potential of MicroRNAs as Biomarkers in the Detection of Preeclampsia. 2020; 24 (6): 321–327.HornakovaAKolkovaZHolubekovaVLodererDLasabovaZBiringerKHalasovaE.Diagnostic Potential of MicroRNAs as Biomarkers in the Detection of Preeclampsia. 2020; 24 (6): 321–327.Search in Google Scholar
Saiyed AN, Vasavada AR, Johar SRK. Recent Trends in MiRNA Therapeutics and the Application of Plant MiRNA for Prevention and Treatment of Human Diseases. Future J Pharm Sci. 2022; 8 (1): 1–20.SaiyedANVasavadaARJoharSRK.Recent Trends in MiRNA Therapeutics and the Application of Plant MiRNA for Prevention and Treatment of Human Diseases. Future J Pharm Sci. 2022; 8 (1): 1–20.Search in Google Scholar
Diener C, Keller A, Meese E. Emerging Concepts of MiRNA Therapeutics: From Cells to Clinic. Trends Genet. 2022; 38 (6): 613–626.DienerCKellerAMeeseE.Emerging Concepts of MiRNA Therapeutics: From Cells to Clinic. Trends Genet. 2022; 38 (6): 613–626.Search in Google Scholar
Nam DY, Rhee JK. Identifying MicroRNAs Associated with Tumor Immunotherapy Response Using an Interpretable Machine Learning Model. Sci Rep. 2024; 14 (1): 1–15.NamDYRheeJK.Identifying MicroRNAs Associated with Tumor Immunotherapy Response Using an Interpretable Machine Learning Model. Sci Rep. 2024; 14 (1): 1–15.Search in Google Scholar
Cortez MA, Anfossi S, Ramapriyan R, Menon H, Atalar SC, Aliru M, Welsh J, Calin GA. Role of MiRNAs in Immune Responses and Immunotherapy in Cancer. Genes Chromosomes Cancer. 2019; 58 (4): 244CortezMAAnfossiSRamapriyanRMenonHAtalarSCAliruMWelshJCalinGA.Role of MiRNAs in Immune Responses and Immunotherapy in Cancer. Genes Chromosomes Cancer. 2019; 58 (4): 244.Search in Google Scholar
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear Transport Proteins: Structure, Function and Disease Relevance. Signal Transduct Target Ther. 2023; 8 (1): 1–29.YangYGuoLChenLGongBJiaDSunQ.Nuclear Transport Proteins: Structure, Function and Disease Relevance. Signal Transduct Target Ther. 2023; 8 (1): 1–29.Search in Google Scholar
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci. 2024; 25 (3): 1469.SeyhanAA.Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci. 2024; 25 (3): 1469.Search in Google Scholar
Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, Bahal R. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med. 2020; 9 (6): 2004.DhuriKBechtoldCQuijanoEPhamHGuptaAVikramABahalR.Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med. 2020; 9 (6): 2004.Search in Google Scholar
Jiao LR, Frampton AE, Jacob J, Pellegrino L, Krell J, Giamas G, Tsim N, Vlavianos P, Cohen P, Ahmad R, et al. MicroRNAs Targeting Oncogenes Are Down-Regulated in Pancreatic Malignant Transformation from Benign Tumors. PLoS One. 2012; 7 (2): e32068.JiaoLRFramptonAEJacobJPellegrinoLKrellJGiamasGTsimNVlavianosPCohenPAhmadRMicroRNAs Targeting Oncogenes Are Down-Regulated in Pancreatic Malignant Transformation from Benign Tumors. PLoS One. 2012; 7 (2): e32068.Search in Google Scholar
Iacomino G. MiRNAs: The Road from Bench to Bedside. Genes (Basel). 2023; 14 (2): 314.IacominoG.MiRNAs: The Road from Bench to Bedside. Genes (Basel). 2023; 14 (2): 314.Search in Google Scholar