Cite

1. World Health Organization. Global tuberculosis report 2016. Geneva: World Health Orga nization;2016Search in Google Scholar

2. Mokry J, Porvaznik I, Kusnir P, Dohal M, Solovic I. Detection of resistance to anti-tuberculosis drugs in the clinical isolates of Mycobacterium tuberculosis from Slovakia through comparison between phenotypic and genetic methods and evaluation of resistance levels with clinical parameter. J Physiol Pharmacol. 2019;70(1):10.26402/jpp.2019.1.10.Search in Google Scholar

3. Porvaznik I, Mokry J, Solovic I. Drug resistance to anti-tuberculotics in children three years status in Slovakia. Acta Medica Martiniana [Internet]. 2014 Mar 12 [cited 2020 Aug 08];13(3):18–22. Available from: https://content.sciendo.com/view/journals/acm/13/3/article-p18.xml10.2478/acm-2013-0018Search in Google Scholar

4. Dohál M, Porvazník I, Pršo K, Rasmussen EM, Solovič I, Mokrý J. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis (Edinb). 2020;123:101946.10.1016/j.tube.2020.101946Search in Google Scholar

5. Yong YK, Tan HY, Saeidi A, et al. Immune Biomarkers for Diagnosis and Treatment Monitoring of Tuberculosis: Current Developments and Future Prospects. Front Microbiol. 2019;10:2789.10.3389/fmicb.2019.02789Search in Google Scholar

6. Getahun H, Kittikraisak W, Heilig CM, et al. Development of a standardized screening rule for tuberculosis in people living with HIV in resource-constrained settings: individual participant data meta-analysis of observational studies. PLoS Med. 2011;8(1):e1000391.10.1371/journal.pmed.1000391Search in Google Scholar

7. Wallis RS, Kim P, Cole S, et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect Dis. 2013;13(4):362-372.10.1016/S1473-3099(13)70034-3Search in Google Scholar

8. Li ZB, Han YS, Wei LL, et al. Screening and identification of plasma lncRNAs uc.48+ and NR_105053 as potential novel biomarkers for cured pulmonary tuberculosis. Int J Infect Dis. 2020;92:141-150.10.1016/j.ijid.2020.01.005Search in Google Scholar

9. Siddiqi K, Lambert ML, Walley J. Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: the current evidence. Lancet Infect Dis. 2003;3(5):288-296.10.1016/S1473-3099(03)00609-1Search in Google Scholar

10. Djoba Siawaya JF, Bapela NB, Ronacher K, et al. Immune parameters as markers of tuberculosis extent of disease and early prediction of anti-tuberculosis chemotherapy response. J Infect. 2008;56(5):340-347.10.1016/j.jinf.2008.02.00718359089Search in Google Scholar

11. Saltini C, Colizzi V. Soluble immunological markers of disease activity in tuberculosis. Eur Respir J. 1999;14(3):485-486.10.1034/j.1399-3003.1999.14c01.x10543263Search in Google Scholar

12. Fallahi-Sichani M, Kirschner DE, Linderman JJ. NF-κB Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis. Front Physiol. 2012;3:170.10.3389/fphys.2012.00170336839022685435Search in Google Scholar

13. Lin PL, Plessner HL, Voitenok NN, Flynn JL. Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc. 2007;12(1):22-25.10.1038/sj.jidsymp.565002717502865Search in Google Scholar

14. Flynn JL, Chan J. Imunology of tuberculosis. Annu Rev Immunol 2001;19:93-12910.1146/annurev.immunol.19.1.9311244032Search in Google Scholar

15. Chowdhury IH, Ahmed AM, Choudhuri S, et al. Alteration of serum inflammatory cytokines in active pulmonary tuberculosis following anti-tuberculosis drug therapy. Mol Immunol. 2014; 62(1):159-168.10.1016/j.molimm.2014.06.00225019566Search in Google Scholar

16. Demir T, Yalçinoz C, Keskinel I, Demiröz F, Yildirim N. sICAM-1 as a serum marker in the diagnosis and follow-up of treatment of pulmonary tuberculosis. Int J Tuberc Lung Dis. 2002;6(2): 155-159.Search in Google Scholar

17. Flynn JL, Chan J. Immunology of tuberculosis. Annual Review of Immunology. 2011; 19:93-12910.1146/annurev.immunol.19.1.93Search in Google Scholar

18. Flynn JL, Chan J, Lin PL. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol. 2011; 4:271–278.10.1038/mi.2011.14331195821430653Search in Google Scholar

19. Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. J Immunol. 2010;185(1):15-22. doi:10.4049/jimmunol.090385610.4049/jimmunol.0903856331195920562268Search in Google Scholar

20. Amelio, P., Portevin, D., Hella, J., Reither, K., Kamwela, L., Lweno, O., et al. (2019). HIV infection functionally impairs Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses. J. Virol. 93:e01728-18.10.1128/JVI.01728-18Search in Google Scholar

21. Biomarkers Definitions Working Group.. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89-95.10.1067/mcp.2001.11398911240971Search in Google Scholar

22. Wallis RS. Sustainable tuberculosis drug development. Clin Infect Dis. 2013;56(1):106-113.10.1093/cid/cis84923042970Search in Google Scholar

23. Wallis RS, Jakubiec W, Kumar V, et al. Biomarker-assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis. Antimicrob Agents Chemother. 2011;55(2): 567-574.10.1128/AAC.01179-10302877621078950Search in Google Scholar

24. Epstein MD, Schluger NW, Davidow AL, Bonk S, Rom WN, Hanna B. Time to detection of Mycobacterium tuberculosis in sputum culture correlates with outcome in patients receiving treatment for pulmonary tuberculosis. Chest. 1998;113(2):379-386.10.1378/chest.113.2.3799498955Search in Google Scholar

25. Hesseling AC, Walzl G, Enarson DA, et al. Baseline sputum time to detection predicts month two culture conversion and relapse in non-HIV-infected patients. Int J Tuberc Lung Dis. 2010;14(5):560-570.Search in Google Scholar

26. Pakasi TA, Karyadi E, Wibowo Y, et al. Vitamin A deficiency and other factors associated with severe tuberculosis in Timor and Rote Islands, East Nusa Tenggara Province, Indonesia. Eur J Clin Nutr. 2009;63(9):1130-1135.10.1038/ejcn.2009.2519471295Search in Google Scholar

27. Chegou NN, Sutherland JS, Malherbe S, et al. Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax 2016; 71: 785–94.10.1136/thoraxjnl-2015-207999Search in Google Scholar

28. Kost GJ. Goals, guidelines and principles for point-of-care testing. In: Principles and practice of point of care testing. Philadelphia, PA: Lippincott Williams and Wilkins;2002:3-12Search in Google Scholar

29. Karyadi E, Schultink W, Nelwan RHH, Gross R, Amin Z, Dolmans WMV et al. (2000). Poor micronutrient status of active pulmonary tuberculosis patients in Indonesia. J ofNutr 130, 2953–2958.10.1093/jn/130.12.2953Search in Google Scholar

30. Denkinger CM, Kik SV, Cirillo DM, et al. Defining the needs for next generation assays for tuberculosis. J Infect Dis. 2015;211 Suppl 2(Suppl 2):S29-S38.10.1093/infdis/jiu821Search in Google Scholar

31. Furuhashi K, Shirai T, Suda T, Chida K. Inflammatory markers in active pulmonary tuberculosis: association with Th1/Th2 and Tc1/Tc2 balance. Kekkaku. 2012;87(1):1-7.Search in Google Scholar

32. de Beer FC, Nel AE, Gie RP, Donald PR, Strachan AF. Serum amyloid A protein and C-reactive protein levels in pulmonary tuberculosis: relationship to amyloidosis. Thorax. 1984;39(3):196-200.10.1136/thx.39.3.196Search in Google Scholar

33. Bajaj G, Rattan A, Ahmad P. Prognostic value of ‘C’ reactive protein in tuberculosis. Indian Pediatr. 1989;26(10):1010-1013.Search in Google Scholar

34. Walzl G, McNerney R, du Plessis N, et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis. 2018;18(7):e199-e210.10.1016/S1473-3099(18)30111-7Search in Google Scholar

35. Yong, Y., Tan, H., Saeidi, A., Wong, W., Vignesh, R., Velu, V., Eri, R., Larsson, M. and Shankar, E., 2020. Immune Biomarkers For Diagnosis And Treatment Monitoring Of Tuberculosis: Current Developments And Future Prospects.10.3389/fmicb.2019.02789Search in Google Scholar

36. Yoon C, Semitala FC, Atuhumuza E, et al. Point-of-care C-reactive protein-based tuberculosis screening for people living with HIV: a diagnostic accuracy study. Lancet Infect Dis 2017; 7: 1285–92.10.1016/S1473-3099(17)30488-7Search in Google Scholar

37. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344-362.10.1016/j.cell.2008.01.02018267068Search in Google Scholar

38. Juffermans NP, Dekkers PE, Verbon A, Speelman P, van Deventer SJ, van der Poll T. Concurrent upregulation of urokinase plasminogen activator receptor and CD11b during tuberculosis and experimental endotoxemia. Infect Immun. 2001;69(8):5182-5185.10.1128/IAI.69.8.5182-5185.20019861711447203Search in Google Scholar

39. Lawn SD, Rudolph D, Wiktor S, Coulibaly D, Ackah A, Lal RB. Tuberculosis (TB) and HIV infection are independently associated with elevated serum concentrations of tumour necrosis factor receptor type 1 and beta2-microglobulin, respectively. Clin Exp Immunol. 2000;122(1):79-84.10.1046/j.1365-2249.2000.01341.x190574511012622Search in Google Scholar

40. van de Stolpe A, van der Saag PT. Intercellular adhesion molecule-1. J Mol Med (Berl). 1996;74(1):13-33.10.1007/BF00202069Search in Google Scholar

41. Montefort S, Holgate ST. Adhesion molecules and their role in inflammation. Respir Med. 1991;85(2):91-99.10.1016/S0954-6111(06)80284-2Search in Google Scholar

42. Edwards D, Kirkpatrick CH. The immunology of mycobacterial diseases. Am Rev Respir Dis. 1986;134(5):1062-1071.10.1164/arrd.1986.134.5.1062Search in Google Scholar

43. Budnik A, Grewe M, Gyufko K, Krutmann J. Analysis of the production of soluble ICAM-1 molecules by human cells. Exp Hematol. 1996;24(2):352-359.Search in Google Scholar

44. Sidenius N, Sier CF, Blasi F. Shedding and cleavage of the urokinase receptor (uPAR): identification and characterisation of uPAR fragments in vitro and in vivo. FEBS Lett. 2000;475(1):52-56.10.1016/S0014-5793(00)01624-0Search in Google Scholar

45. Eugen-Olsen J, Gustafson P, Sidenius N, et al. The serum level of soluble urokinase receptor is elevated in tuberculosis patients and predicts mortality during treatment: a community study from Guinea-Bissau. Int J Tuberc Lung Dis. 2002;6(8):686-692.Search in Google Scholar

46. Annunziato F, Manetti R, Tomasévic I, et al. Expression and release of LAG-3-encoded protein by human CD4+ T cells are associated with IFN-gamma production. FASEB J. 1996;10(7):769-776.10.1096/fasebj.10.7.8635694Search in Google Scholar

47. Lienhardt C, Azzurri A, Amedei A, et al. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. Eur J Immunol. 2002;32(6):1605-1613.10.1002/1521-4141(200206)32:6<1605::AID-IMMU1605>3.0.CO;2-6Search in Google Scholar

48. Cooper AM, D’Souza C, Frank AA, Orme IM. The course of Mycobacterium tuberculosis infection in the lungs of mice lacking expression of either perforin- or granzyme-mediated cytolytic mechanisms. Infect Immun. 1997;65(4):1317-1320.10.1128/iai.65.4.1317-1320.1997Search in Google Scholar

49. World Health Organization. Global tuberculosis report 2016. Geneva: World Health Organization; 2016Search in Google Scholar

50. Hosp M, Elliott AM, Raynes JG, et al. Neopterin, beta 2-microglobulin, and acute phase proteins in HIV-1-seropositive and -seronegative Zambian patients with tuberculosis. Lung. 1997;175(4): 265-275.10.1007/PL00007573Search in Google Scholar

51. Cox KL, Devanarayan V, Kriauciunas A, et al. Immunoassay Methods. 2012 May 1 [Updated 2019 Jul 8]. In: Sittampalam GS, Grossman A, Brimacombe K, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Tran slational Sciences; 2004-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92434/Search in Google Scholar

52. Diel R, Loddenkemper R, Nienhaus A. Predictive value of interferon- γ release assays and tuber-culin skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest. 2012;142(1):63-75.10.1378/chest.11-3157Search in Google Scholar

53. Bray C, Bell LN, Liang H, et al. Erythrocyte Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in Clinical Medicine. WMJ. 2016;115(6):317-321.Search in Google Scholar

54. Mori T, Sakatani M, Yamagishi F, et al. Specific detection of tuberculosis infection: an interferon-gamma-based assay using new antigens. Am J Respir Crit Care Med 2004;170:59-64.10.1164/rccm.200402-179OCSearch in Google Scholar

55. Porvaznik I, Mokry J, Solovic I. Drug resistance to anti-tuberculotics in children - three years status in Slovakia. Acta Medica Martiniana [Internet]. 2014 Mar 12 [cited 2020 Aug 08];13(3):18–22. Available from: https://content.sciendo.com/view/journals/acm/13/3/article-p18.xml10.2478/acm-2013-0018Search in Google Scholar

56. Sigal GB, Segal MR, Mathew A, et al. Biomarkers of Tuberculosis Severity and Treatment Effect: A Directed Screen of 70 Host Markers in a Randomized Clinical Trial. EBioMedicine. 2017;25:112-121.10.1016/j.ebiom.2017.10.018Search in Google Scholar

57. Chegou NN, Black GF, Loxton AG, et al. Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infect Dis 2012;12:10.10.1186/1471-2334-12-10Search in Google Scholar

58. Wallis RS, Wang C, Doherty TM, et al. Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect Dis 2010; 10:68–910.1016/S1473-3099(10)70003-7Search in Google Scholar

59. Stek, C., Allwood, B., Walker, N., Wilkinson, R., Lynen, L. and Meintjes, G., 2020. The Immune Mechanisms Of Lung Parenchymal Damage In Tuberculosis And The Role Of Host-Directed Therapy.Search in Google Scholar

60. Choi CM, Kang CI, Jeung WK, Kim DH, Lee CH, Yim JJ. Role of the C-reactive protein for the diagnosis of TB among military personnel in South Korea. Int J Tuberc Lung Dis. 2007;11(2):233-236.Search in Google Scholar

61. Flesch IE, Kaufmann SH. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect Immun. 1990;58(8):2675-2677. doi:10.1128/IAI.58.8.2675-2677.199010.1128/iai.58.8.2675-2677.19902588722115027Search in Google Scholar

62. Dohal M, Porvaznik I, Kusnir P, Mokry J. Whole-Genome Sequencing in Relation to Resistance of Mycobacterium Tuberculosis. Acta Medica Martiniana [Internet]. 2019 May 10 [cited 2020 Aug 08];19(1):12–21. Available from:https://content.sciendo.com/view/journals/acm/19/1/article-p12.xml10.2478/acm-2019-0002Search in Google Scholar

63. Ates Guler S, Bozkus F, Inci M, F, Kokoglu O, F, Ucmak H, Ozden S, Yuksel M: Evaluation of Pulmonary and Extrapulmonary Tuberculosis in Immunocompetent Adults: A Retrospective Case Series Analysis. Med Princ Pract 2015;24:75-79.10.1159/000365511558817825341702Search in Google Scholar

64. Tierney, D. and Nardell, E., 2018. Extrapulmonary Tuberculosis (TB) - Infectious Diseases - MSD Manual Professional Edition. [online] MSD Manual Professional Edition. Available at: <https://www.msdmanuals.com/professional/infectious-diseases/mycobacteria/extrapulmonary-tuberculosis-tb> [Accessed 18 November 2020].Search in Google Scholar

65. Jilani TN, Avula A, Zafar Gondal A, et al. Active Tuberculosis. [Updated 2020 Aug 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513246/Search in Google Scholar

eISSN:
1335-8421
Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Internal Medicine, Cardiology