Acceso abierto

Experimental Models of Acute Lung Injury: their Advantages and Limitations


Cite

1. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342 (18): 1334-49.10.1056/NEJM200005043421806Search in Google Scholar

2. Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res 2016; 167 (1): 183-91.10.1016/j.trsl.2015.04.015Search in Google Scholar

3. Bernard GR, Artigas A, Brigham KL et al. Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee. J Crit Care 1994; 9(1): 72-81.10.1016/0883-9441(94)90033-7Search in Google Scholar

4. ARDS Definition Task Force; Ranieri VM, Rubenfeld GD, Thompson BT et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23): 2526-33.Search in Google Scholar

5. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008; 295 (3): L379-99.10.1152/ajplung.00010.2008253679318621912Search in Google Scholar

6. Pierrakos C, Karanikolas M, Scolletta S, Karamouzos V, Velissaris D. Acute respiratory distress syndrome: pathophysiology and therapeutic options. J Clin Med Res 2012; 4 (1): 7-16.10.4021/jocmr761w327949522383921Search in Google Scholar

7. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012;122 (8): 2731-40.10.1172/JCI60331340873522850883Search in Google Scholar

8. Pelosi P, D’Onofrio D, Chiumello D et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl 2003; 42: 48s-56s.10.1183/09031936.03.0042080312946001Search in Google Scholar

9. Blondonnet R, Constantin JM, Sapin V, Jabaudon M. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome. Dis Markers 2016; 2016: 3501373.10.1155/2016/3501373476633126980924Search in Google Scholar

10. Hästbacka J, Linko R, Tervahartiala T et al. Serum MMP-8 and TIMP-1 in critically ill patients with acute respiratory failure: TIMP-1 is associated with increased 90-day mortality. Anesth Analg. 2014; 118 (4): 790–8.10.1213/ANE.000000000000012024651234Search in Google Scholar

11. Ware LB, Matthay MA, Parsons PE et al.; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med. 2007; 35 (8): 1821-8.Search in Google Scholar

12. Galani V, Tatsaki E, Bai M et al. The role of apoptosis in the pathophysiology of Acute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review. Pathol Res Pract 2010; 206 (3): 145-50.10.1016/j.prp.2009.12.00220097014Search in Google Scholar

13. Matute-Bello G, Downey G, Moore BB et al.; Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011; 44 (5): 725-38.10.1165/rcmb.2009-0210STSearch in Google Scholar

14. Rotta AT, Gunnarsson B, Fuhrman BP, Hernan LJ, Steinhorn DM. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury. Crit Care Med 2001; 29 (11): 2176-84.10.1097/00003246-200111000-00021Search in Google Scholar

15. Ronchi CF, dos Anjos Ferreira AL, Campos FJ et al. High-frequency oscillatory ventilation attenuates oxidative lung injury in a rabbit model of acute lung injury. Exp Biol Med (Maywood) 2011; 236 (10): 1188-96.10.1258/ebm.2011.011085Search in Google Scholar

16. Mokra D, Kosutova P, Balentova S et al. Effects of budesonide on the lung functions, inflammation and apoptosis in a saline-lavage model of acute lung injury. J Physiol Pharmacol 2016; 67 (6): 919-32.Search in Google Scholar

17. Kosutova P, Mikolka P, Balentova S et al. Effects of phosphodiesterase 5 inhibitor sildenafil on the respiratory parameters, inflammation and apoptosis in a saline lavage-induced model of acute lung injury. J Physiol Pharmacol 2018; 69 (5): 815-26.Search in Google Scholar

18. Wang HM, Bodenstein M, Markstaller K. Overview of the pathology of three widely used animal models of acute lung injury. Eur Surg Res 2008; 40 (4): 305-16.10.1159/000121471Search in Google Scholar

19. Imai Y, Nakagawa S, Ito Y, Kawano T, Slutsky AS, Miyasaka K. Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J Appl Physiol (1985) 2001; 91 (4): 1836-44.10.1152/jappl.2001.91.4.1836Search in Google Scholar

20. Sevecova D, Calkovska A, Javorka M, Javorka K. Meconium aspiration syndrome – an experimental model. Acta Med Mart 2001; 1 (1): 5-8.Search in Google Scholar

21. Cleary GM, Wiswell TE. Meconium-stained amniotic fluid and the meconium aspiration syndrome. An update. Pediatr Clin North Am 1998; 45 (3): 511–29.10.1016/S0031-3955(05)70025-0Search in Google Scholar

22. Mokra D, Mokry J. Meconium aspiration syndrome: from pathomechanisms to treatment. New York: Nova Biomedical Books; 2010.Search in Google Scholar

23. Mokra D, Calkovska A, Drgova A. Assessment of the meconium removal in surfactant vs. saline-lavaged rabbits with meconium aspiration. Acta Med Mart 2005; 5 (2): 3-8.Search in Google Scholar

24. Davey AM, Becker JD, Davis JM. Meconium aspiration syndrome: physiological and inflammatory changes in a newborn piglet model. Pediatr Pulmonol 1993; 16 (2): 101-8.10.1002/ppul.19501602058367215Search in Google Scholar

25. Sun B, Curstedt T, Robertson B. Surfactant inhibition in experimental meconium aspiration. Acta Paediatr 1993; 82 (2): 182-9.10.1111/j.1651-2227.1993.tb12635.x8477165Search in Google Scholar

26. Shekerdemian LS, Ravn HB, Penny DJ. Interaction between inhaled nitric oxide and intravenous sildenafil in a porcine model of meconium aspiration syndrome. Pediatr Res 2004; 55 (3): 413-8.10.1203/01.PDR.0000112033.81970.C214711900Search in Google Scholar

27. Mikolka P, Mokra D, Kopincova J, Tomcikova-Mikusiakova L, Calkovska A. Budesonide added to modified porcine surfactant Curosurf may additionally improve the lung functions in meconium aspiration syndrome. Physiol Res 2013; 62 (Suppl 1): S191-200.10.33549/physiolres.93260624329699Search in Google Scholar

28. Renesme L, Elleau C, Nolent P et al. Effect of high-frequency oscillation and percussion versus conventional ventilation in a piglet model of meconium aspiration. Pediatr Pulmonol 2013; 48 (3): 257-64.10.1002/ppul.2259022570113Search in Google Scholar

29. Mokra D, Drgova A, Mokry J, Antosova M, Durdik P, Calkovska A. N-acetylcysteine effectively diminished meconium-induced oxidative stress in adult rabbits. J Physiol Pharmacol 2015; 66 (1): 101-10.Search in Google Scholar

30. Barazzone C, Horowitz S, Donati YR, Rodriguez I, Piguet PF. Oxygen toxicity in mouse lung: pathways to cell death. Am J Respir Cell Mol Biol 1998; 19 (4): 573-81.10.1165/ajrcmb.19.4.31739761753Search in Google Scholar

31. Shea LM, Beehler C, Schwartz M, Shenkar R, Tuder R, Abraham E. Hyperoxia activates NF-kappaB and increases TNF-alpha and IFN-gamma gene expression in mouse pulmonary lymphocytes. J Immunol 1996; 157 (9): 3902-8.10.4049/jimmunol.157.9.3902Search in Google Scholar

32. Barry BE, Crapo JD. Patterns of accumulation of platelets and neutrophils in rat lungs during exposure to 100% and 85% oxygen. Am Rev Respir Dis 1985; 132 (3): 548-55.Search in Google Scholar

33. Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 1999; 277 (1 Pt 1): L167-73.10.1152/ajplung.1999.277.1.L16710409244Search in Google Scholar

34. Li LF, Lai YT, Chang CH et al. Neutrophil elastase inhibitor reduces ventilation-induced lung injury via nuclear factor-κB and NF-κB repressing factor in mice. Exp Biol Med (Maywood) 2014; 239 (8): 1045-57.10.1177/153537021452939324728725Search in Google Scholar

35. Altemeier WA, Matute-Bello G, Frevert CW et al. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol 2004; 287 (3): L533-42.10.1152/ajplung.00004.200415145786Search in Google Scholar

36. Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol 2012; 91 (6-7): 590-601.10.1016/j.ejcb.2011.11.00422284832Search in Google Scholar

37. Rosenthal C, Caronia C, Quinn C, Lugo N, Sagy M. A comparison among animal models of acute lung injury. Crit Care Med 1998; 26 (5): 912-6.10.1097/00003246-199805000-000279590322Search in Google Scholar

38. Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest 2006; 116 (12): 3211-3219.10.1172/JCI29499167971117143330Search in Google Scholar

39. Raghavendran K, Davidson BA, Mullan BA et al. Acid and particulate-induced aspiration lung injury in mice: importance of MCP-1. Am J Physiol Lung Cell Mol Physiol 2005; 289 (1): L134-43.10.1152/ajplung.00390.200415778247Search in Google Scholar

40. Davidson BA, Alluri R. Gastric Aspiration Models. Bio Protoc 2013; 3 (22). pii: e968.10.21769/BioProtoc.968498700227540561Search in Google Scholar

41. Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294 (2): L152-60.10.1152/ajplung.00313.200717993587Search in Google Scholar

42. Shen AS, Haslett C, Feldsien DC, Henson PM, Cherniack RM. The intensity of chronic lung inflammation and fibrosis after bleomycin is directly related to the severity of acute injury. Am Rev Respir Dis 1988; 137 (3): 564-71.10.1164/ajrccm/137.3.5642449833Search in Google Scholar

43. Bannerman DD, Goldblum SE. Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis. Am J Physiol Lung Cell Mol Physiol 2003; 284 (6): L899-914.10.1152/ajplung.00338.200212736186Search in Google Scholar

44. Wang HL, Akinci IO, Baker CM, Urich D, Bellmeyer A, Jain M, Chandel NS, Mutlu GM, Budinger GR. The intrinsic apoptotic pathway is required for lipopolysaccharide-induced lung endothelial cell death. J Immunol 2007; 179 (3): 1834-41.10.4049/jimmunol.179.3.183417641050Search in Google Scholar

45. Vadász I, Morty RE, Kohstall MG et al. Oleic acid inhibits alveolar fluid reabsorption: a role in acute respiratory distress syndrome? Am J Respir Crit Care Med 2005; 171 (5): 469-79.Search in Google Scholar

46. Beilman G. Pathogenesis of oleic acid-induced lung injury in the rat: distribution of oleic acid during injury and early endothelial cell changes. Lipids 1995; 30 (9): 817–23.10.1007/BF025339578577225Search in Google Scholar

47. Hussain N, Wu F, Zhu L, Thrall RS, Kresch MJ. Neutrophil apoptosis during the development and resolution of oleic acid-induced acute lung injury in the rat. Am J Respir Cell Mol Biol 1998; 19 (6): 867–74.10.1165/ajrcmb.19.6.31189843920Search in Google Scholar

48. Welty-Wolf KE, Carraway MS, Ortel TL et al. Blockade of tissue factor-factor X binding attenuates sepsis-induced respiratory and renal failure. Am J Physiol Lung Cell Mol Physiol 2006; 290 (1): L21-31.10.1152/ajplung.00155.200516100288Search in Google Scholar

49. Matute-Bello G, Frevert CW, Kajikawa O et al. Septic shock and acute lung injury in rabbits with peritonitis: failure of the neutrophil response to localized infection. Am J Respir Crit Care Med 2001; 163 (1): 234-43.10.1164/ajrccm.163.1.990903411208651Search in Google Scholar

50. Lomas-Neira J, Chung CS, Perl M, Gregory S, Biffl W, Ayala A. Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge. Am J Physiol Lung Cell Mol Physiol 2006; 290 (1): L51-8.10.1152/ajplung.00028.200516157517Search in Google Scholar

51. Fox-Dewhurst R, Alberts MK, Kajikawa O et al. Pulmonary and systemic inflammatory responses in rabbits with gram-negative pneumonia. Am J Respir Crit Care Med 1997; 155 (6): 2030-40.10.1164/ajrccm.155.6.91961129196112Search in Google Scholar

52. Knapp S. LPS and bacterial lung inflammation models. Drug Discovery Today: Disease Models 2009; 6 (4): 113-8.Search in Google Scholar

53. Neely CF, Keith IM. A1 adenosine receptor antagonists block ischemia-reperfusion injury of the lung. Am J Physiol 1995; 268 (6 Pt 1): L1036-46.10.1152/ajplung.1995.268.6.L1036Search in Google Scholar

54. Sakao Y, Kajikawa O, Martin TR, Nakahara Y, Hadden WA 3rd, Harmon CL, Miller EJ. Association of IL-8 and MCP-1 with the development of reexpansion pulmonary edema in rabbits. Ann Thorac Surg 2001; 71 (6): 1825-32.10.1016/S0003-4975(01)02489-4Search in Google Scholar

55. Cochrane CG, Revak SD. Surfactant lavage treatment in a model of respiratory distress syndrome. Chest 1999; 116 (1 Suppl): 85S-86S.10.1378/chest.116.suppl_1.85S10424605Search in Google Scholar

56. Altemeier WA, Matute-Bello G, Gharib SA, Glenny RW, Martin TR, Liles WC. Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation. J Immunol 2005; 175 (5): 3369-76.10.4049/jimmunol.175.5.336916116230Search in Google Scholar

eISSN:
1335-8421
Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Internal Medicine, Cardiology