Acceso abierto

Whole-Genome Sequencing in Relation to Resistance of Mycobacterium Tuberculosis


Cite

1. World Health Organisation. Global Tuberculosis Report 2017. Geneva: WHO; 2017. Search in Google Scholar

2. Brossier F, Guindo D, Pham A, et al. Performance of the New Version (v2.0) of the GenoType MTBDRsl Test for Detection of Resistance to Second-Line Drugs in Multidrug-Resistant Mycobacterium tuberculosis Complex Strains. J Clin Microbiol. 2016;54(6):1573-1580. Search in Google Scholar

3. Porvaznik I, Mokry J, Solovic I. Drug resistance to anti-tuberculotics in children – three years status in Slovakia. Acta Medica Martiniana 2013, 13(3): 18-22 Search in Google Scholar

4. Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017; Search in Google Scholar

5. World Health Organisation. WHO treatment guidelines for drug-resistant tuberculosis 2016 update. Geneva, Switzerland 2016 Search in Google Scholar

6. World Health Organisation. Global Tuberculosis Report 2017. Geneva: WHO; 2017. Search in Google Scholar

7. Daley CL, Caminero JA. Management of multidrug resistant tuberculosis. Semin Respir Crit Care Med. 2013;34(1):44-59. Search in Google Scholar

8. Lynch JB. Multidrug-resistant Tuberculosis. Med Clin North Am. 2013;97(4):553-79. Search in Google Scholar

9. Cirillo DM, Miotto P, Tortoli E. Evolution of Phenotypic and Molecular Drug Susceptibility Testing. Adv Exp Med Biol. 2017;1019:221-246. Search in Google Scholar

10. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537-44. Search in Google Scholar

11. Black PA, De vos M, Louw GE, et al. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates. BMC Genomics. 2015;16:857. Search in Google Scholar

12. Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet. 2014;15(5):307-20. Search in Google Scholar

13. Niemann S, Supply P. Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med. 2014;4(12):a021188. Search in Google Scholar

14. Mukhopadhyay R. DNA sequencers: the next generation. Anal Chem. 2009;81(5):1736-40. Search in Google Scholar

15. Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes (Basel). 2010;1(1):38-69. Search in Google Scholar

16. Zvárová J, Mazura I. Metody molekulární biologie a bioinformatiky. 1. vyd. Praha: Karolinum, 2012. Biomedicínská informatika. ISBN 978-80-246-2150-0. Search in Google Scholar

17. Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014;30(9):401-7. Search in Google Scholar

18. Quick J, Loman NJ, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530(7589):228-232. Search in Google Scholar

19. Schmidt K, Mwaigwisya S, Crossman LC, et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrob Chemother. 2017;72(1):104-114. Search in Google Scholar

20. World Health Organisation. HIV drug resistance surveillance guidance: 2015 update, Geneva 2015 Search in Google Scholar

21. Pfyffer GE, Wittwer F. Incubation time of mycobacterial cultures: how long is long enough to issue a final negative report to the clinician?. J Clin Microbiol. 2012;50(12):4188-9. Search in Google Scholar

22. Witney AA, Cosgrove CA, Arnold A, Hinds J, Stoker NG, Butcher PD. Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Med. 2016;14:46. Search in Google Scholar

23. Almeida da silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in Myco -bacterium tuberculosis: classical and new drugs. J Antimicrob Chemother. 2011;66(7):1417–30. Search in Google Scholar

24. Reece RJ. Analysis of Genes and Genomes. Wiley; 2004. Search in Google Scholar

25. De vos M, Müller B, Borrell S, et al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother. 2013;57(2):827-32. Search in Google Scholar

26. Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in. Eur Respir J. 2017;50(6) Search in Google Scholar

27. Farhat MR, Shapiro BJ, Kieser KJ, et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet. 2013;45(10):1183-9. Search in Google Scholar

28. Zhang H, Li D, Zhao L, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet. 2013; 45(10):1255-60. Search in Google Scholar

29. Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev. 2016;102:55-72. Search in Google Scholar

30. Warner DF, Koch A, Mizrahi V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol. 2015;23(1):14-21. Search in Google Scholar

31. Satta G, Lipman M, Smith GP, Arnold C, Kon OM, Mchugh TD. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential?. Clin Microbiol Infect. 2018;24(6):604-609. Search in Google Scholar

32. Porvaznik I, Mokry J, Solovic I. Classical against molecular-genetic methods for susceptibility testing of antituberculotics. Adv Exp Med Biol. 2015,835:15-22 Search in Google Scholar

33. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012;13(9):601-612. Search in Google Scholar

34. Coll F, Mcnerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7(1):51. Search in Google Scholar

35. Feuerriegel S, Schleusener V, Beckert P, et al. PhyResSE: a Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage from Whole-Genome Sequencing Data. J Clin Microbiol. 2015;53(6):1908-14. Search in Google Scholar

36. Parrish N, Carrol K. Importance of improved TB diagnostics in addressing the extensively drug-resistant TB crisis. Future Microbiol. 2008;3(4):405-13. Search in Google Scholar

37. Witney AA, Gould KA, Arnold A, et al. Clinical application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis cases. J Clin Microbiol. 2015;53(5):1473-83. Search in Google Scholar

38. Rufai SB, Kumar P, Singh A, Prajapati S, Balooni V, Singh S. Comparison of Xpert MTB/RIF with line probe assay for detection of rifampin-monoresistant Mycobacterium tuberculosis. J Clin Microbiol. 2014;52(6):1846-52. Search in Google Scholar

39. Velayati AA, Farnia P, Mozafari M, et al. High prevelance of rifampin-monoresistant tuberculosis: a retrospective analysis among Iranian pulmonary tuberculosis patients. Am J Trop Med Hyg. 2014;90(1):99-105. Search in Google Scholar

40. US Food and Drug Administration, 2013 Search in Google Scholar

41. Walker TM, Kohl TA, Omar SV, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis. 2015;15(10):1193-1202. Search in Google Scholar

42. Chatterjee A, Nilgiriwala K, Saranath D, Rodrigues C, Mistry N. Whole genome sequencing of clinical strains of Mycobacterium tuberculosis from Mumbai, India: A potential tool for determining drug-resistance and strain lineage. Tuberculosis (Edinb). 2017;107:63-72. Search in Google Scholar

43. Shea J, Halse TA, Lapierre P, et al. Comprehensive Whole-Genome Sequencing and Reporting of Drug Resistance Profiles on Clinical Cases of Mycobacterium tuberculosis in New York State. J Clin Microbiol. 2017;55(6):1871-1882. Search in Google Scholar

44. Doughty EL, Sergeant MJ, Adetifa I, Antonio M, Pallen MJ. Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer. PeerJ. 2014;2:e585. Search in Google Scholar

45. Brown AC, Bryant JM, Einer-Jensen K, et al. Rapid Whole-Genome Sequencing of Mycobacterium tuberculosis Isolates Directly from Clinical Samples. J Clin Microbiol. 2015;53(7):2230-7. Search in Google Scholar

46. Colman RE, Anderson J, Lemmer D, et al. Rapid Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates Directly from Clinical Samples by Use of Amplicon Sequencing: a Proof-of-Concept Study. J Clin Microbiol. 2016;54(8):2058-67. Search in Google Scholar

47. Votintseva AA, Bradley P, Pankhurst L, et al. Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples. J Clin Microbiol. 2017;55(5):1285-1298. Search in Google Scholar

48. Nelson KN, Shah NS, Mathema B, et al. Spatial Patterns of Extensively drug-resistant Tuberculosis (XDR-tuberculosis) transmission in KwaZulu-Natal, South Africa. J Infect Dis. 2018; Search in Google Scholar

49. Guthrie JL, Delli pizzi A, Roth D, et al. Genotyping and Whole-Genome Sequencing to Identify Tuberculosis Transmission to Pediatric Patients in British Columbia, Canada, 2005-2014. J Infect Dis. 2018;218(7):1155-1163. Search in Google Scholar

50. Sobkowiak B, Glynn JR, Houben RMGJ, et al. Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics. 2018;19(1):613. Search in Google Scholar

51. Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223-7. Search in Google Scholar

52. Bryant JM, Harris SR, Parkhill J, et al. Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respir Med. 2013;1(10):786-92. Search in Google Scholar

eISSN:
1338-4139
Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Internal Medicine, Cardiology