Analysis of Application of Gradient Concrete Models to Assess Concrete Cover Degradation Under Reinforcement Corrosion
31 dic 2023
Acerca de este artículo
Publicado en línea: 31 dic 2023
Páginas: 109 - 123
Recibido: 28 abr 2023
Aceptado: 27 jun 2023
DOI: https://doi.org/10.2478/acee-2023-0055
Palabras clave
© 2023 Kseniya Yurkova et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Initial elastic and strength material parameters of concrete
Description | Value |
---|---|
Modulus of elasticity, E (GPa) | 38.28 |
Poisson’s ratio, ν (−) | 0.2 |
Uniaxial tensile strength, ft (MPa) | 3.99 |
Uniaxial compressive strength, fc (MPa) | 56.4 |
Biaxial compressive strength, fbc=1.15 fc (MPa) | 64.86 |
Variable material parameters of the CDPM model assumed for the cyclic compression test to determine the value D, βc, γc0, [30]
Description | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 |
---|---|---|---|---|---|---|---|---|
D/D* | 4 | 4 | 4 | 1 | 8 | 1 | 1 | 1 |
|
1 | 1 | 1 | 1 | 1 | 0.7 | 1 | 1.3 |
|
1 | 2 | 3 | 2 | 2 | 2 | 2 | 2 |
|
1 | 2 | 3 | 2 | 2 | 1.33 | 1.33 | 1.33 |
The material parameters of the CDPM model assumed in the cyclic compression test to determine the values D, βc, γc0, [30]
Description of the variable | Value |
---|---|
Abscissa of the intersection point between the compression cap and the Drucker-Prager yield function,
|
−50 |
The ratio between the major and minor axes of the cap, R (−) | 2 |
Tension cap hardening constant, RT (−) | 1 |
Tension damage thresholds, γt0 · 105 (−) | 9.38 |
Nonlocal interaction range parameter, c (−) | 10 |
Over-nonlocal averaging parameter, m (−) | 2.5 |
Tension damage evolution constant,
|
|
Hardening material constant, D* (MPa) | 10000 |
Compression damage thresholds,
|
0.0001 |
Compression damage evolution constant,
|
1000 |
Initial elastic and strength material parameters of steel
Description | Value |
---|---|
Modulus of elasticity, Es (GPa) | 200 |
Poisson’s ratio, νs (1) | 0.3 |
Yield strength, fy (MPa) | 235 |
Contact model parameters: bonded, no separation with sliding, CZM, standard
Parameter | Value | |||
---|---|---|---|---|
Coefficient of friction, μ (1) | 1.0 | 0.2 | 0.2 | 0.2 |
Cohesion coefficient, ch(MPa) | 0.0 | 0.375 | 0.375 | 0.375 |
Normal contact stiffness,
|
1.0 | 1.0 | 1.0 | 1.0 |
Tangent contact stiffness,
|
1.0 | 2.0 | 5.0 | 5.0 |
Maximum allowable shear stress, τmax (MPa) | 1E20 | 18.77 | 18.77 | 18.77 |
Contact Type | B | NSS | CZM | S |
Comparison of the calculation results and the percentage deviation from the results obtained for the MW model with HSD2
Model | LAB (mm) | |ΔAB|(mm) |
|
---|---|---|---|
EX1 | 101.22 | - | - |
EDM E1 | 100.94 | 0.27 | 29 |
EDM E2 | 100.96 | 0.25 | 26 |
EDM E3 | 101.01 | 0.20 | 20 |
EDM E4 | 100.98 | 0.23 | 24 |
CDPM C1 | 101.22 | 0.01 | 1 |
CDPM C2 | 101.20 | 0.02 | 2 |
CDPM C3 | 101.20 | 0.02 | 2 |
CDPM C4 | 101.20 | 0.02 | 2 |
MW M1 | 101.29 | 0.07 | 6 |
MW M2 | 101.26 | 0.04 | 3 |
MW M3 | 101.31 | 0.09 | 7 |
MW M4 | 101.30 | 0.08 | 6 |
List of materials and contact models analysed in the paper, along with denotations
Contact Type | MW with HSD2 | EDM | CDPM |
---|---|---|---|
B | M1 | E1 | C1 |
NSS | M2 | E2 | C2 |
S | M3 | E3 | C3 |
CZM | M4 | E4 | C4 |
Supplementary parameters of the cohesive model (CZM)
Parameter | Value |
---|---|
Maximum normal contact stress, σmax (MPa) | 3.99 |
Critical crack energy in the normal direction, Gcn (N/m) | 151 |
Maximum tangential contact stress, τt,max (MPa) | 2.26 |
Critical fracture energy in the tangential direction, Gct (N/m) | 113 |
Artificial damping parameter, η (1) | 0.0001 |
Inelastic parameters of the MW model with HSD2 [21]
Description | Value | Description | Value |
---|---|---|---|
Fracture energy, Gft (N/m) | 151 | Ωci (1) |
0.33 |
Dilation angle, ψ (Deg) | 20 | Ωcu (1) |
0.85 |
κcm (1) |
0.00151 | Ωcr (1) |
0.2 |
κcu (1) |
0.00175 | Ωtr (1) |
0.1 |
Variable material parameters of the CDPM model assumed for the tensile test to determine the values βt and c [30]
Description | N1 | N2 | N3 | N4 |
---|---|---|---|---|
βt | 2000 | 2000 | 2000 | 3000 |
c (mm2) | 12 | 8 | 5 | 5 |