Cite

NASA Science. (2022, May 5). Solar System Exploration. https://solarsystem.nasa.gov/ NASA Science 2022 May 5 Solar System Exploration https://solarsystem.nasa.gov/ Search in Google Scholar

Jakosky, B. M. (2019). The CO2 inventory on Mars. Planetary and Space Science, 175, 52–59. https://doi.org/10.1016/j.pss.2019.06.002 JakoskyB. M. 2019 The CO2 inventory on Mars Planetary and Space Science 175 52 59 https://doi.org/10.1016/j.pss.2019.06.002 Search in Google Scholar

Kurokawa, H., Kurosawa, K., & Usui, T. (2018). A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus, 299, 443–459. https://doi.org/10.1016/j.icarus.2017.08.020 KurokawaH. KurosawaK. UsuiT. 2018 A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions Icarus 299 443 459 https://doi.org/10.1016/j.icarus.2017.08.020 Search in Google Scholar

Scherf, M., & Lammer, H. (2021). Did Mars Possess a Dense Atmosphere During the First ~ 400 Million Years? Space Science Review, 217. https://doi.org/10.1007/s11214-020-00779-3 ScherfM. LammerH. 2021 Did Mars Possess a Dense Atmosphere During the First ~ 400 Million Years? Space Science Review 217 https://doi.org/10.1007/s11214-020-00779-3 Search in Google Scholar

NASA Science. (n.d.). Mars Weather. Retrieved June 23, 2023, from https://mars.nasa.gov/msl/weather/ NASA Science (n.d.) Mars Weather Retrieved June 23, 2023, from https://mars.nasa.gov/msl/weather/ Search in Google Scholar

Zhang, J., Guo, J., & Dobynde, M. I. (2023). What is the Radiation Impact of Extreme Solar Energetic Particle Events on Mars? Space Weather, 21(6), 1–13. https://doi.org/10.1029/2023SW003490 ZhangJ. GuoJ. DobyndeM. I. 2023 What is the Radiation Impact of Extreme Solar Energetic Particle Events on Mars? Space Weather 21 6 1 13 https://doi.org/10.1029/2023SW003490 Search in Google Scholar

United States Department of Labor (n.d.). Non-Ionizing Radiation. https://www.osha.gov/non-ionizing-radiation United States Department of Labor (n.d.) Non-Ionizing Radiation https://www.osha.gov/non-ionizing-radiation Search in Google Scholar

European Organization for Nuclear Research [CERN]. (n.d., May 13). Cosmic rays: particles from outer space. https://home.cern/science/physics/cosmic-rays-particles-outer-space European Organization for Nuclear Research [CERN] n.d. May 13 Cosmic rays: particles from outer space https://home.cern/science/physics/cosmic-rays-particles-outer-space Search in Google Scholar

Stanford Solar Center [SSC]. (n.d., May 14). Tracking solar flares. http://solar-center.stanford.edu/SID/activities/ionosphere.html Stanford Solar Center [SSC] n.d. May 14 Tracking solar flares http://solar-center.stanford.edu/SID/activities/ionosphere.html Search in Google Scholar

Thoudam, S., Rachen, J. P., van Vliet, A., Achterberg, A., Buitink, S., Falcke, H., & Hörandel, J.R. (2016). Cosmic-ray energy spectrum and composition up to the ankle: the case for a second Galactic component. Astronomy & Astrophysics, 595(A33). https://doi.org/10.1051/0004-6361/201628894 ThoudamS. RachenJ. P. van VlietA. AchterbergA. BuitinkS. FalckeH. HörandelJ.R. 2016 Cosmic-ray energy spectrum and composition up to the ankle: the case for a second Galactic component Astronomy & Astrophysics 595 A33 https://doi.org/10.1051/0004-6361/201628894 Search in Google Scholar

Obodovskiy, I. (2019). Radiation Fundamentals, Applications, Risks, and Safety. Elsevier. https://doi.org/10.1016/C2016-0-02609-8 ObodovskiyI. 2019 Radiation Fundamentals, Applications, Risks, and Safety Elsevier https://doi.org/10.1016/C2016-0-02609-8 Search in Google Scholar

Logachev, Yu. I., Zeldovich, M. A., Surova, G. M., & Kecskemety, K. (2003). Energy Spectrum of Galactic 10–100 MeV Protons in Quiet Sun Periods. Cosmic Research 41, 13–18. https://doi.org/10.1023/A:1022395311635 LogachevYu. I. ZeldovichM. A. SurovaG. M. KecskemetyK. 2003 Energy Spectrum of Galactic 10–100 MeV Protons in Quiet Sun Periods Cosmic Research 41 13 18 https://doi.org/10.1023/A:1022395311635 Search in Google Scholar

Muscheler, R. (2013). Ice Core Methods | 10Be and Cosmogenic Radionuclides in Ice Cores. In Elias S. A. & Mock C. J. (Eds.), Encyclopedia of Quaternary Science (Second edition) (353–360). https://doi.org/10.1016/B978-0-444-53643-3.00328-9 MuschelerR. 2013 Ice Core Methods | 10Be and Cosmogenic Radionuclides in Ice Cores In EliasS. A. MockC. J. (Eds.), Encyclopedia of Quaternary Science Second edition 353 360 https://doi.org/10.1016/B978-0-444-53643-3.00328-9 Search in Google Scholar

Rahmanifard, F., de Wet, N., W. C., Schwadron, A., Owens, M. J., Jordan, A. P., Wilson, J. K., Joyce, C. J., Spence, H. E., Smith, C. W., & Townsend, L. W. (2020). Galactic Cosmic Radiation in the Interplanetary Space Through a Modern Secular Minimum. Space Weather, 18(9). https://doi.org/10.1029/2019SW002428 RahmanifardF. de WetN., W. C. SchwadronA. OwensM. J. JordanA. P. WilsonJ. K. JoyceC. J. SpenceH. E. SmithC. W. TownsendL. W. 2020 Galactic Cosmic Radiation in the Interplanetary Space Through a Modern Secular Minimum Space Weather 18 9 https://doi.org/10.1029/2019SW002428 Search in Google Scholar

Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Reitz, G., Cucinotta, F. A., Kim, M.-H., Grinspoon, D., Bullock, M. A.,…Moores, J. E. (2014). Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover. Science, 343(6169). https://doi.org/10.1126/science.1244797 HasslerD. M. ZeitlinC. Wimmer-SchweingruberR. F. EhresmannB. RafkinS. EigenbrodeJ. L. BrinzaD. E. WeigleG. BöttcherS. BöhmE. BurmeisterS. GuoJ. KöhlerJ. MartinC. ReitzG. CucinottaF. A. KimM.-H. GrinspoonD. BullockM. A. MooresJ. E. 2014 Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover Science 343 6169 https://doi.org/10.1126/science.1244797 Search in Google Scholar

Paris, A. J., Davies, E. T., Tognetti, L., & Zahniser, C. (2019). Prospective Lava Tubes at Hellas Planitia. Journal of the Washington Academy of Sciences. ParisA. J. DaviesE. T. TognettiL. ZahniserC. 2019 Prospective Lava Tubes at Hellas Planitia Journal of the Washington Academy of Sciences Search in Google Scholar

Blanchett, A. (2017, September 19). Space Radiation is Risky Business for the Human Body. NASA. Human Research. https://www.nasa.gov/feature/space-radiation-is-risky-business-for-the-human-body BlanchettA. 2017 September 19 Space Radiation is Risky Business for the Human Body NASA. Human Research https://www.nasa.gov/feature/space-radiation-is-risky-business-for-the-human-body Search in Google Scholar

NASA. (2018, June 8) Space Radiation (HRP Elements). https://www.nasa.gov/hrp/elements/radiation/risks NASA 2018 June 8 Space Radiation (HRP Elements) https://www.nasa.gov/hrp/elements/radiation/risks Search in Google Scholar

International Commission on Radiological Protection [ICRP]. (n.d.). Recommendations. https://www.icrp.org/consultation_viewitem.asp?guid=%7B012C4E04-7B2F-4A2E-B010-B7F614B3BEE0%7D International Commission on Radiological Protection [ICRP] (n.d.) Recommendations https://www.icrp.org/consultation_viewitem.asp?guid=%7B012C4E04-7B2F-4A2E-B010-B7F614B3BEE0%7D Search in Google Scholar

World Nuclear Association. (2022, October). Radiation and Health Effects. World-nuclear.org. https://world-nuclear.org/information-library/safety-and-security/radiation-and-health/radiation-and-health-effects.aspx World Nuclear Association 2022 October Radiation and Health Effects World-nuclear.org https://world-nuclear.org/information-library/safety-and-security/radiation-and-health/radiation-and-health-effects.aspx Search in Google Scholar

International Atomic Energy Agency [IAEA]. (n.d.). Radiation in Everyday Life. https://www.iaea.org/Publications/Factsheets/English/radlife International Atomic Energy Agency [IAEA] (n.d.) Radiation in Everyday Life https://www.iaea.org/Publications/Factsheets/English/radlife Search in Google Scholar

Cekanaviciute, E., Rosi S., & Costes, S.V. (2018). Central nervous system responses to simulated galactic cosmic rays. International Journal of Molecular Sciences 19(11). https://www.mdpi.com/1422-0067/19/11/3669/htm CekanaviciuteE. RosiS. CostesS.V. 2018 Central nervous system responses to simulated galactic cosmic rays International Journal of Molecular Sciences 19 11 https://www.mdpi.com/1422-0067/19/11/3669/htm Search in Google Scholar

Dobynde, M. I., Shprits, Y. Y., Drozdov, A. Y., Hoffman, J., & LI, J. (2021). Beating 1 Sievert: Optimal Radiation Shielding of Astronauts on a Mission to Mars. Space Weather, 19(9). https://doi.org/10.1029/2021SW002749 DobyndeM. I. ShpritsY. Y. DrozdovA. Y. HoffmanJ. LIJ. 2021 Beating 1 Sievert: Optimal Radiation Shielding of Astronauts on a Mission to Mars Space Weather 19 9 https://doi.org/10.1029/2021SW002749 Search in Google Scholar

Rojdev, K., & Atwell, W. (2015). Hydrogen-and Methane-Loaded Shielding Materials for Mitigation of Galactic Cosmic Rays and Solar Particle Events. Gravitational and Space Research, 3(1). https://doi.org/10.2478/gsr-2015-0006 RojdevK. AtwellW. 2015 Hydrogen-and Methane-Loaded Shielding Materials for Mitigation of Galactic Cosmic Rays and Solar Particle Events Gravitational and Space Research 3 1 https://doi.org/10.2478/gsr-2015-0006 Search in Google Scholar

Naito, M., Kodaira, S., Ogawara, R., Tobita, K., Someya, Y., Kusumoto, T., Kusano, H., Kitamura, H., Koike, M., Uchihori, Y., Yamanaka, M., Mikoshiba, R., Endo, T., Kiyono, N., Hagiwara, Y., Kodama, H., Matsuo, S., Takami, Y., Sato, & T., Orimo, Si. (2020). Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 26, 69–76. https://doi.org/10.1016/j.lssr.2020.05.001 NaitoM. KodairaS. OgawaraR. TobitaK. SomeyaY. KusumotoT. KusanoH. KitamuraH. KoikeM. UchihoriY. YamanakaM. MikoshibaR. EndoT. KiyonoN. HagiwaraY. KodamaH. MatsuoS. TakamiY. SatoT. OrimoSi. 2020 Investigation of shielding material properties for effective space radiation protection Life Sciences in Space Research 26 69 76 https://doi.org/10.1016/j.lssr.2020.05.001 Search in Google Scholar

Yokoo, S., Hirose, K., Tagawa, S., Morard, G., & Ohishi, Y. (2022). Stratification in planetary cores by liquid immiscibility in Fe-S-H. Nature Communications 13(644). https://doi.org/10.1038/s41467-022-28274-z YokooS. HiroseK. TagawaS. MorardG. OhishiY. 2022 Stratification in planetary cores by liquid immiscibility in Fe-S-H Nature Communications 13 644 https://doi.org/10.1038/s41467-022-28274-z Search in Google Scholar

Yao, C., & Ma, Y. (2021). Superconducting materials: Challenges and opportunities for large-scale applications. iScience, 24(6), 102541. https://doi.org/10.1016/j.isci.2021.102541 YaoC. MaY. 2021 Superconducting materials: Challenges and opportunities for large-scale applications iScience 24 6 102541 https://doi.org/10.1016/j.isci.2021.102541 Search in Google Scholar

Lutz, K., Cadiou, H., Trevino, T., & Cinelli, I. (2021). Electromagnetic Fields to Sustain Life on Earth, in Space, and Planets. 72nd International Astronautical Congress (IAC), Dubai. https://www.researchgate.net/publication/356474843_Electromagnetic_Fields_to_Sustain_Life_on_Earth_in_Space_and_Planets LutzK. CadiouH. TrevinoT. CinelliI. 2021 Electromagnetic Fields to Sustain Life on Earth, in Space, and Planets 72nd International Astronautical Congress (IAC) Dubai https://www.researchgate.net/publication/356474843_Electromagnetic_Fields_to_Sustain_Life_on_Earth_in_Space_and_Planets Search in Google Scholar

Norimura, T., Imada, H., Kunugita, N., Yoshida, N., & Nikaido, M. (1993). Effects of strong magnetic fields on cell growth and radiation response of human T-lymphocytes in culture. Journal of UOEH, 15(2), 103–112. https://doi.org/10.7888/juoeh.15.103 NorimuraT. ImadaH. KunugitaN. YoshidaN. NikaidoM. 1993 Effects of strong magnetic fields on cell growth and radiation response of human T-lymphocytes in culture Journal of UOEH 15 2 103 112 https://doi.org/10.7888/juoeh.15.103 Search in Google Scholar

Saunders, R. (2005). Static magnetic fields: animal studies. Progress in Biophysics and Molecular Biology, 87(2–3), 225–239. https://doi.org/10.1016/j.pbiomolbio.2004.09.001 SaundersR. 2005 Static magnetic fields: animal studies Progress in Biophysics and Molecular Biology 87 2–3 225 239 https://doi.org/10.1016/j.pbiomolbio.2004.09.001 Search in Google Scholar

Bamford, R. A., Kellett, B. J., Green, J. L., Dong, C., Airapetian, V., & Bingham, B. (2021). How to create an artificial magnetosphere for Mars. Acta Astronautica, 190, 323–333. https://doi.org/10.1016/j.actaastro.2021.09.023 BamfordR. A. KellettB. J. GreenJ. L. DongC. AirapetianV. BinghamB. 2021 How to create an artificial magnetosphere for Mars Acta Astronautica 190 323 333 https://doi.org/10.1016/j.actaastro.2021.09.023 Search in Google Scholar

Bloshenko, A. D., Robinson, J. M., Colon, R. A., & Anchordoqui, L. A. (2021). Health threat from cosmic radiation during manned missions to Mars. Proceedings of Science, 37th International Cosmic Ray Conference, 15–22 July, 2021, Berlin. https://doi:10.5281/zenodo.4327684 BloshenkoA. D. RobinsonJ. M. ColonR. A. AnchordoquiL. A. 2021 Health threat from cosmic radiation during manned missions to Mars Proceedings of Science, 37th International Cosmic Ray Conference 15–22 July, 2021 Berlin https://doi:10.5281/zenodo.4327684 Search in Google Scholar

Khuller, A. R., Christensen, P. R., & Warren, S. G. (2021). Spectral Albedo of Dusty Martian H2O Snow and Ice. Journal of Geophysical Research: Planets, 126(9). https://doi.org/10.1029/2021JE006910 KhullerA. R. ChristensenP. R. WarrenS. G. 2021 Spectral Albedo of Dusty Martian H2O Snow and Ice Journal of Geophysical Research: Planets 126 9 https://doi.org/10.1029/2021JE006910 Search in Google Scholar

Khuller, A. R., & Christensen, P. R. (2021). Evidence of exposed dusty water ice within martian gullies. Journal of Geophysical Reasearch: Planets, 126. https://doi.org/10.1029/2020JE006539 KhullerA. R. ChristensenP. R. 2021 Evidence of exposed dusty water ice within martian gullies Journal of Geophysical Reasearch: Planets 126 https://doi.org/10.1029/2020JE006539 Search in Google Scholar

Zhang, J., Guo, J., Dobynde, M. I., Wang, Y., & Wimmer-Schweingruber, R. F. (2022). From the Top of Martian Olympus to Deep Craters and Beneath: Mars Radiation Environment Under Different Atmospheric and Regolith Depths. Journal of Geophysical Research: Planets, 127(3). https://doi.org/10.1029/2021JE007157 ZhangJ. GuoJ. DobyndeM. I. WangY. Wimmer-SchweingruberR. F. 2022 From the Top of Martian Olympus to Deep Craters and Beneath: Mars Radiation Environment Under Different Atmospheric and Regolith Depths Journal of Geophysical Research: Planets 127 3 https://doi.org/10.1029/2021JE007157 Search in Google Scholar

Tillman, N. T. (2017, December 9). Valles Marineris: Facts About the Grand Canyon of Mars. Space.com. https://www.space.com/20446-valles-marineris.html TillmanN. T. 2017 December 9 Valles Marineris: Facts About the Grand Canyon of Mars Space.com https://www.space.com/20446-valles-marineris.html Search in Google Scholar

Mitrofanov, I., Malkhov, A., Djachkova, A., Golovin, D., Litvak, M., Mokrousov, M., Sanin, A., Svedhem, H., & Zelenyi, L. (2022). The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars. Icarus, 374. https://doi.org/10.1016/j.icarus.2021.114805 MitrofanovI. MalkhovA. DjachkovaA. GolovinD. LitvakM. MokrousovM. SaninA. SvedhemH. ZelenyiL. 2022 The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars Icarus 374 https://doi.org/10.1016/j.icarus.2021.114805 Search in Google Scholar

Butcher, F. E. (2022). Water Ice at Mid-Latitudes on Mars. Oxford Research Encyclopedia of Planetary Science. Oxford University Press. Retrieved 24 June 2022, from https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-239 ButcherF. E. 2022 Water Ice at Mid-Latitudes on Mars. Oxford Research Encyclopedia of Planetary Science Oxford University Press Retrieved 24 June 2022, from https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-239 Search in Google Scholar

NASA. (2016, November 22) Mars Ice Deposit Holds as Much Water as Lake Superior. https://www.nasa.gov/feature/jpl/mars-ice-deposit-holds-as-much-water-as-lake-superior NASA 2016 November 22 Mars Ice Deposit Holds as Much Water as Lake Superior https://www.nasa.gov/feature/jpl/mars-ice-deposit-holds-as-much-water-as-lake-superior Search in Google Scholar

Chen, J. L., Yun, S. J., Dong, T. K., Ren, Z. Z., & Zhang, X. P. (2022). Studies of the radiation environment on the Mars surface using the Geant4 toolkit. Nuclear Science and Techniques 33(11). https://doi.org/10.1007/s41365-022-00987-2 ChenJ. L. YunS. J. DongT. K. RenZ. Z. ZhangX. P. 2022 Studies of the radiation environment on the Mars surface using the Geant4 toolkit Nuclear Science and Techniques 33 11 https://doi.org/10.1007/s41365-022-00987-2 Search in Google Scholar

Guo, J., Khaksarighiri, S., Wimmer-Schweingruber, R. F., Hassler, D. M., Ehresmann, B., Zeitlin, C., Löffler, S., Matthiä, D., Berger, T., Reitz, G., & Calef, F. (2021). Directionality of the Martian Surface Radiation and Derivation of the Upward Albedo Radiation. Geophysical Research Letters, 48(15). https://doi.org/10.1029/2021GL093912 GuoJ. KhaksarighiriS. Wimmer-SchweingruberR. F. HasslerD. M. EhresmannB. ZeitlinC. LöfflerS. MatthiäD. BergerT. ReitzG. CalefF. 2021 Directionality of the Martian Surface Radiation and Derivation of the Upward Albedo Radiation Geophysical Research Letters 48 15 https://doi.org/10.1029/2021GL093912 Search in Google Scholar

Mangan, T. P., Plane, J. M. C., & Murray, B. J. (2021). The Phase of Water Ice Which Forms in Cold Clouds in the Mesospheres of Mars, Venus, and Earth. Journal of Geophysical Research: Planets, 126(3). https://doi.org/10.1029/2020JE006796 ManganT. P. PlaneJ. M. C. MurrayB. J. 2021 The Phase of Water Ice Which Forms in Cold Clouds in the Mesospheres of Mars, Venus, and Earth Journal of Geophysical Research: Planets 126 3 https://doi.org/10.1029/2020JE006796 Search in Google Scholar

Mifsud, D.V., Hailey, P.A., Herczku, P., Juhász, Z., Kovács, S. T. S., Sulik, B., Ioppolo, S., Kaňuchová, Z., McCullough, R. W., Paripás, B. & Mason, N. J. (2022). Laboratory experiments on the radiation astrochemistry of water ice phases. The European Physical Journal D (76)87. https://doi.org/10.1140/epjd/s10053-022-00416-4 MifsudD.V. HaileyP.A. HerczkuP. JuhászZ. KovácsS. T. S. SulikB. IoppoloS. KaňuchováZ. McCulloughR. W. ParipásB. MasonN. J. 2022 Laboratory experiments on the radiation astrochemistry of water ice phases The European Physical Journal D 76 87 https://doi.org/10.1140/epjd/s10053-022-00416-4 Search in Google Scholar

NASA. (2016, December 29) A New Home on Mars: NASA Langley’s Icy Concept for Living on the Red Planet. https://www.nasa.gov/feature/langley/a-new-home-on-mars-nasa-langley-s-icy-concept-for-living-on-the-red-planet NASA 2016 December 29 A New Home on Mars: NASA Langley’s Icy Concept for Living on the Red Planet https://www.nasa.gov/feature/langley/a-new-home-on-mars-nasa-langley-s-icy-concept-for-living-on-the-red-planet Search in Google Scholar

Cushing, G. E. (2015). Mars Global Cave Candidate Catalog PDS4 Archive Bundle. PDS Cartography and Imaging Sciences Node (IMG). https://doi.org/10.17189/1519222 CushingG. E. 2015 Mars Global Cave Candidate Catalog PDS4 Archive Bundle PDS Cartography and Imaging Sciences Node (IMG) https://doi.org/10.17189/1519222 Search in Google Scholar

Williams, M. (2016, December 19). How strong is the gravity on Mars? Universe Today. https://www.universetoday.com/14859/gravity-on-mars/ WilliamsM. 2016 December 19 How strong is the gravity on Mars? Universe Today https://www.universetoday.com/14859/gravity-on-mars/ Search in Google Scholar

Van Ellen, L., & Peck, D. (2018). Use of in situ ice to build a sustainable radiation shielding habitat on Mars. 69th International Astronautical Congress, Bremen. https://www.researchgate.net/publication/342145558_Use_of_in_situ_ice_to_build_a_sustainable_radiation_shielding_habitat_on_Mars Van EllenL. PeckD. 2018 Use of in situ ice to build a sustainable radiation shielding habitat on Mars 69th International Astronautical Congress Bremen https://www.researchgate.net/publication/342145558_Use_of_in_situ_ice_to_build_a_sustainable_radiation_shielding_habitat_on_Mars Search in Google Scholar

Blachowicz, T., & Ehrmann, A. (2021). Shielding of Cosmic Radiation by Fibrous Materials. Fibres, 9(60). https://doi.org/10.3390/fib9100060 BlachowiczT. EhrmannA. 2021 Shielding of Cosmic Radiation by Fibrous Materials Fibres 9 60 https://doi.org/10.3390/fib9100060 Search in Google Scholar

Roberts, A. D., Whittall, D. R., Breitling, R., Takano, E., Blaker, J. J., Hay, S., & Scrutton, N. S. (2021). Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Materials Today Bio, 12. https://doi.org/10.1016/j.mtbio.2021.100136 RobertsA. D. WhittallD. R. BreitlingR. TakanoE. BlakerJ. J. HayS. ScruttonN. S. 2021 Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders Materials Today Bio 12 https://doi.org/10.1016/j.mtbio.2021.100136 Search in Google Scholar

Shiwei, N., Dritsas, S., & Fernandez, J. G. (2020). Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing. PLoS ONE 15(9). https://doi.org/10.1371/journal.pone.0238606 ShiweiN. DritsasS. FernandezJ. G. 2020 Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing PLoS ONE 15 9 https://doi.org/10.1371/journal.pone.0238606 Search in Google Scholar

NASA. (2019, May 4) Teams 3D Print Planetary Habitats, Awarded $700K in NASA Challenge. https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/19-017.html NASA 2019 May 4 Teams 3D Print Planetary Habitats, Awarded $700K in NASA Challenge https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/19-017.html Search in Google Scholar

Designboom (2023, February 17). Interstellar shoots for the Moon, Mars, and more. https://www.designboom.com/architecture/interstellar-lab-self-sustainable-space-pods-dassault-systemes-02-17-2023/ Designboom 2023 February 17 Interstellar shoots for the Moon, Mars, and more https://www.designboom.com/architecture/interstellar-lab-self-sustainable-space-pods-dassault-systemes-02-17-2023/ Search in Google Scholar

Savage, N. (2017, December 27). To build settlements on Mars, we’ll need materials chemistry. Chemical & Engineering News. https://cen.acs.org/articles/96/i1/build-settlements-Mars-ll-need.html SavageN. 2017 December 27 To build settlements on Mars, we’ll need materials chemistry Chemical & Engineering News https://cen.acs.org/articles/96/i1/build-settlements-Mars-ll-need.html Search in Google Scholar

Wan, L., Wendner, R., & Cusatis, G. (2016). A novel material for in situ construction on Mars: experiments and numerical simulations. Construction and Building Materials, 120, 222–231. https://doi.org/10.1016/j.conbuildmat.2016.05.046 WanL. WendnerR. CusatisG. 2016 A novel material for in situ construction on Mars: experiments and numerical simulations Construction and Building Materials 120 222 231 https://doi.org/10.1016/j.conbuildmat.2016.05.046 Search in Google Scholar

Esmaeil, N., Gharagozloo, M., Rezaei, A., & Grunig, G. (2014). Dust events, pulmonary diseases and immune system. American Journal of Clinical and Experimental Immunology, 3(1), 20–29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960758/ EsmaeilN. GharagozlooM. RezaeiA. GrunigG. 2014 Dust events, pulmonary diseases and immune system American Journal of Clinical and Experimental Immunology 3 1 20 29 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960758/ Search in Google Scholar

Bier, H., Vermeer, E., Hidding, A., & Jani, K. (2021). Design-to-Robotic-Production of Underground Habitats on Mars. SPOOL, 8(2), 31–38. https://doi.org/10.7480/spool.2021.2.6075 BierH. VermeerE. HiddingA. JaniK. 2021 Design-to-Robotic-Production of Underground Habitats on Mars SPOOL 8 2 31 38 https://doi.org/10.7480/spool.2021.2.6075 Search in Google Scholar

eISSN:
2720-6947
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Architecture and Design, Architecture, Architects, Buildings