STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
STN (Students Scientific Society) Aanatomia-Klinika-Nauka, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical UniversityWroclaw, Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical application – a comprehensive review. Phytochemistry. 2022;197:113128; DOI:10.1016/J.PHYTOCHEM.2022.113128.Search in Google Scholar
Yu YC, Li J, Zhang M, Pan JC, Yu Y, Zhang JB, Zheng L, Si JM, Xu Y. Resveratrol improves brain-gut axis by regulation of 5-HT-dependent signaling in the rat model of irritable bowel syndrome. Front Cell Neurosci. 2019;13:30; DOI:10.3389/FNCEL.2019.00030.Search in Google Scholar
Xu Y, Cui SY, Ma Q, Shi J, Yu Y, Li JX, Zheng L, Zhang Y, Si JM, Yu YC. Trans- resveratrol ameliorates stress-induced irritable bowel syndrome-like behaviors by regulation of brain-gut axis. Front Pharmacol. 2018;9:631; DOI:10.3389/FPHAR.2018.00631.Search in Google Scholar
Sperber AD, Bangdiwala SI, Drossman DA, Ghoshal UC, Simren M, Tack J, Whitehead WE, Dumitrascu DL, Fang X, Fukudo S, Kellow J, Okeke E, Quigley EMM, Schmulson M, Whorwell P, Archampong T, Adibi P, Andresen V, Benninga MA, Bonaz B, Bor S, Fernandez LB, Choi SC, Corazziari ES, Francisconi C, Hani A, Lazebnik L, Lee YY, Mulak A, Rahman MM, Santos J, Setshedi M, Syam AF, Vanner S, Wong RK, Lopez-Colombo A, Costa V, Dickman R, Kanazawa M, Keshteli AH, Khatun R, Maleki I, Poitras P, Pratap N, Stefanyuk O, Thomson S, Zeevenhooven J, Palsson OS. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology. 2021;160(1):99-114.e3; DOI:10.1053/J.GASTRO.2020.04.014.Search in Google Scholar
Kopczynska M, Mokros L, Pietras T, Malecka-Panas E. Quality of life and depression in patients with irritable bowel syndrome. Prz Gastroenterol. 2018;13(2):102-8; DOI:10.5114/PG.2018.75819.Search in Google Scholar
Vasant DH, Paine PA, Black CJ, Houghton LA, Everitt HA, Corsetti M, Agrawal A, Aziz I, Farmer AD, Eugenicos MP, Moss-Morris R, Yiannakou Y, Ford AC. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. Gut. 2021;70(7):1214-40; DOI:10.1136/GUTJNL-2021-324598.Search in Google Scholar
Dinan TG, Quigley EM, Ahmed SM, Scully P, O’Brien S, O’Mahony L, O’Mahony S, Shanahan F, Keeling PW. Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology. 2006;130(2):304-11; DOI:10.1053/J. GASTRO.2005.11.033.Search in Google Scholar
Fichna J, Storr MA. Brain-gut interactions in IBS. Front Pharmacol. 2012;3:127; DOI:10.3389/FPHAR.2012.00127.Search in Google Scholar
Shaikh SD, Sun N, Canakis A, Park WY, Weber HC. Irritable bowel syndrome and the gut microbiome: a comprehensive review. J Clin Med. 2023;12(7):2558; DOI:10.3390/JCM12072558.Search in Google Scholar
Piché M, Bouin M, Arsenault M, Poitras P, Rainville P. Decreased pain inhibition in irritable bowel syndrome depends on altered descending modulation and higher-order brain processes. Neuroscience. 2011;195:166-75; DOI:10.1016/J.NEUROSCIENCE.2011.08.040.Search in Google Scholar
Yuan Y, Wang X, Huang S, Wang H, Shen G. Low-level inflammation, immunity, and brain-gut axis in IBS: unraveling the complex relationships. Gut Microbes. 2023;15(2): 2263209; DOI:10.1080/19490976.2023.22 63209.Search in Google Scholar
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk between intestinal serotonergic system and pattern recognition receptors on the microbiota– gut–brain axis. Front Endocrinol (Lausanne). 2021;12:748254; DOI:10.3389/FENDO.2021.748254.Search in Google Scholar
Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26(4):331-43; DOI:10.1016/j.jchemneu.2003.10.002.Search in Google Scholar
Stasi C, Bellini M, Bassotti G, Blandizzi C, Milani S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech Coloproctol. 2014;18(7):613-21; DOI:10.1007/S10151-013-1106-8.Search in Google Scholar
Guzel T, Mirowska-Guzel D. The role of serotonin neurotransmission in gastrointestinal tract and pharmacotherapy. Molecules. 2022;27(5): 1680; DOI:10.3390/MOLECULES27051680.Search in Google Scholar
Chung JY, Jeong JH, Song J. Resveratrol modulates the gut-brain axis: focus on glucagon-like peptide-1, 5-HT, and gut microbiota. Front Aging Neurosci. 2020;12:588044; DOI:10.3389/FNAGI.2020.588044.Search in Google Scholar
Caron AZ, He X, Mottawea W, Seifert EL, Jardine K, Dewar-Darch D, Cron GO, Harper ME, Stintzi A, McBurney MW. The SIRT1 deacetylase protects mice against the symptoms of metabolic syndrome. FASEB J. 2014;28(3):1306-16; DOI:10.1096/FJ.13-243568.Search in Google Scholar
Kumar A, Negi G, Sharma SS. Neuroprotection by resveratrol in diabetic neuropathy: concepts & mechanisms. Curr Med Chem. 2013;20(36):4640-5; DOI:10.2174/09298673113209990151.Search in Google Scholar
Baur JA. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev. 2010;131(4):261-9; DOI:10.1016/J.MAD.2010.02.007.Search in Google Scholar
Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenter ology. 2007;132(1):397-414; DOI:10.1053/J.GASTRO.2006.11.002Search in Google Scholar
Salehi M, Purnell JQ. The role of glucagon-like peptide-1 in energy homeostasis. Metab Syndr Relat Disord. 2019;17(4):183-91; DOI:10.1089/MET.2018.0088.Search in Google Scholar
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131-57; DOI:10.1053/J.GASTRO.2007.03.054.Search in Google Scholar
Dao TM, Waget A, Klopp P, Serino M, Vachoux C, Pechere L, Drucker DJ, Champion S, Barthélemy S, Barra Y, Burcelin R, Sérée E. Resveratrol increases glucose induced GLP-1 secretion in mice: a mechanism which contributes to the glycemic control. PLoS One. 2011;6(6): e20700; DOI:10.1371/JOURNAL.PONE.0020700.Search in Google Scholar
Pegah A, Abbasi-Oshaghi E, Khodadadi I, Mirzaei F, Tayebinai H. Probiotic and resveratrol normalize GLP-1 levels and oxidative stress in the intestine of diabetic rats. Metabol Open. 2021;10:100093; DOI:10.1016/J. METOP.2021.100093.Search in Google Scholar
Knop FK, Konings E, Timmers S, Schrauwen P, Holst JJ, Blaak EE. Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects. Diabet Med. 2013;30(10):1214-8; DOI:10.1111/DME.12231.Search in Google Scholar
Santos BF, Grenho I, Martel PJ, Ferreira BI, Link W. FOXO family isoforms. Cell Death Dis. 2023;14(12):797; DOI:10.1038/s41419-023-06177-1.Search in Google Scholar
Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S, Mayer EA, Niesler B, Quigley EM, Rajilić-Stojanović M, Schemann M, Schwille-Kiuntke J, Simren M, Zipfel S, Spiller RC. Irritable bowel syndrome. Nat Rev Dis Primers. 2016;2:16014; DOI:10.1038/NRDP.2016.14.Search in Google Scholar
Yáñez M, Fraiz N, Cano E, Orallo F. Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biophys Res Commun. 2006;344(2):688-95; DOI:10.1016/J.BBRC.2006.03.190.Search in Google Scholar
Xu Y, Wang Z, You W, Zhang X, Li S, Barish PA, Vernon MM, Du X, Li G, Pan J, Ogle WO. Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol. 2010;20(6):405-13; DOI:10.1016/J.EURONEURO.2010.02.013.Search in Google Scholar
Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW. Enterochromaffin 5-HT cells – A major target for GLP-1 and gut microbial metabolites. Mol Metab. 2018;11:70-83; DOI:10.1016/J.MOLMET.2018.03.004.Search in Google Scholar
Chen Y, Zhang H, Chen Y, Jia P, Ji S, Zhang Y, Wang T. Resveratrol and its derivative pterostilbene ameliorate intestine injury in intrauterine growth-retarded weanling piglets by modulating redox status and gut microbiota. J Animal Sci Biotechnol. 2021;12(1):70; DOI:10.1186/S40104-021-00589-9.Search in Google Scholar
Diaz-Gerevini GT, Repossi G, Dain A, Tarres MC, Das UN, Eynard AR. Beneficial action of resveratrol: How and why? Nutrition. 2016;32(2):174-8; DOI:10.1016/J.NUT.2015.08.017.Search in Google Scholar
Roudsari NM, Lashgari N, Momtaz S, Farzaei MH, Marques AM, Abdolghaffari AH. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. DARU J Pharm Sci. 2019;27(2):755-80; DOI:10.1007/S40199-019-00284-1.Search in Google Scholar
Dou Z, Rong X, Zhao E, Zhang L, Lv Y. Neuroprotection of resveratrol against focal cerebral ischemia/reperfusion injury in mice through a mechanism targeting gut-brain axis. Cell Mol Neurobiol. 2019;39(6):883-98; DOI:10.1007/S10571-019-00687-3.Search in Google Scholar
Zhuang Y, Wu H, Wang X, He J, He S, Yin Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid Med Cell Longev. 2019;2019:7591840; DOI:10.1155/2019/7591840.Search in Google Scholar
Sale S, Verschoyle RD, Boocock D, Jones DJL, Wilsher N, Ruparelia KC, Potter GA, Farmer PB, Steward WP, Gescher AJ. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4′-tetramethoxystilbene. Br J Cancer. 2004;90(3):736-44; DOI:10.1038/SJ.BJC.6601568.Search in Google Scholar
Frozza RL, Bernardi A, Paese K, Hoppe JB, Silva Td, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C. Characterization of trans-resveratrol- loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol. 2010;6(6):694-703; DOI:10.1166/JBN.2010.1161.Search in Google Scholar
Giang J, Lan X, Crichton M, Marx W, Marshall S. Efficacy and safety of biophenol‐rich nutraceuticals in adults with inflammatory gastrointestinal diseases or irritable bowel syndrome: a systematic literature review and meta‐analysis. Nutr Diet. 2021;79(1):76-93; DOI:10.1111/1747-0080.12672.Search in Google Scholar