Cite

Introduction

Firstly, Zadeh introduced the concept of fuzzy numbers and fuzzy arithmetic [22]. The major application of fuzzy arithmetic is fuzzy differential equations. Fuzzy differential equations are suitable models to model dynamic systems in which there exist uncertainties or vaguness. Fuzzy differential equations can be examined by several approach, such as Hukuhara differentiability, generalized differentiability, the concept of differential inclusion etc [1], [3], [4], [5], [6, 7, 8], [9], [11], [13, 14], [15] [17], [19], [20].

In this paper is on a fuzzy Sturm-Liouville problem with the eigenvalue parameter in the boundary condition. Important notes are given for the problem. Integral equations are found of the problem.

Preliminaries

Definition 1. [18] A fuzzy number is a function u : 0,1 $\mathbb{R}\to \left[ 0,1 \right]$satisfying the properties:u is normal, u is convex fuzzy set, u is upper semi-continuous on ℝ, clxεux>0 $cl\left\{ x\varepsilon \mathbb{R}\left| u\left( x \right)>0 \right. \right\}$is compact, where cl denotes the closure of a subset.

Let RF denote the space of fuzzy numbers.

Definition 2. [15] Let uɛF. The a-level set of u, denoted, uα,0<α1, ${{\left[ u \right]}^{\alpha }},0<\alpha \le 1,$is

uα=xεuxα. $${{\left[ u \right]}^{\alpha }}=\left\{ x\varepsilon \mathbb{R}\left| u\left( x \right)\ge \alpha \right. \right\}.$$

If a = 0; the support of u is defined

u0=clxεux>0. $${{\left[ u \right]}^{0}}=cl\left\{ x\varepsilon \mathbb{R}\left| u\left( x \right)>0 \right. \right\}.$$

The notation, uα=u¯α,u¯α ${{\left[ u \right]}^{\alpha }}=\left[ {{\underline{u}}_{\alpha }},{{{\bar{u}}}_{\alpha }} \right]$denotes explicitly the a-level set of u. We refer to u¯ $\underline{u}$and ū as the lower and upper branches of u,respectively.

The following remark shows when u ¯ α , u ¯ α $\left[ {{\underline{u}}_{\alpha }},{{{\bar{u}}}_{\alpha }} \right]$ is a valid a-level set.

Remark 1. [10,15] The sufficient and necessary conditions for u¯α,u¯α $\left[ {{\underline{u}}_{\alpha }},{{{\bar{u}}}_{\alpha }} \right]$to define the parametric form of a fuzzy number as follows:

u¯α ${{\underline{u}}_{\alpha }}$is bounded monotonic increasing (nondecreasing) left-continuous function on (0;1] and right-continuous for a = 0,

u¯α ${{\bar{u}}_{\alpha }}$is bounded monotonic decreasing (nonincreasing) left-continuous function on (0;1] and right-continuous fora = 0,

u¯αu¯α,0α1. $${{\underline{u}}_{\alpha }}\le {{\bar{u}}_{\alpha }},0\le \alpha \le 1.$$

Definition 3. [15] For u,vεF and λ ∈R, the sum u+v and the product λ u are defined by u+vα=uα+vα, ${{\left[ u+v \right]}^{\alpha }}={{\left[ u \right]}^{\alpha }}+{{\left[ v \right]}^{\alpha }},$λuα=λuα ${{\left[ \lambda u \right]}^{\alpha }}=\lambda {{\left[ u \right]}^{\alpha }}$where means the usual addition of two intervals (subsets) ofand λ [u]α means the usual product between a scalar and a subset of R.

The metric structure is given by the Hausdorff distance

D:F×F+0, $$D:{{\mathbb{R}}_{F}}\times {{\mathbb{R}}_{F}}\to {{\mathbb{R}}_{+}}\cup \left\{ 0 \right\},$$

by

Du,v=supα0,1 maxu¯αv¯α,u¯αv¯α. $$D\left( u,v \right)=\underset{\alpha \in \left[ 0,1 \right]}{\mathop{\text{sup}}}\,\text{ max}\left\{ \left| {{\underline{u}}_{\alpha }}-{{\underline{v}}_{\alpha }} \right|,\left| {{{\bar{u}}}_{\alpha }}-{{{\bar{v}}}_{\alpha }} \right| \right\}.$$

Definition 4. [18] If A is a symmetric triangular numbers with supports a¯,a¯, $\left[ \underline{a},\bar{a} \right],$the α–level sets of A is Aα= ${{\left[ A \right]}^{\alpha }}=$a¯+a¯a¯2α,a¯a¯a¯2α. $\left[ \underline{a}+\left( \frac{\bar{a}-\underline{a}}{2} \right)\alpha ,\bar{a}-\left( \frac{\bar{a}-\underline{a}}{2} \right)\alpha \right].$

Definition 5. [16] u,v 2F, uα=u¯α,u¯α,vα=v¯α,v¯α, ${{\left[ u \right]}^{\alpha }}=\left[ {{\underline{u}}_{\alpha }},{{{\bar{u}}}_{\alpha }} \right],{{\left[ v \right]}^{\alpha }}=\left[ {{\underline{v}}_{\alpha }},{{{\bar{v}}}_{\alpha }} \right],$the product uv is defined by

uvα=uαvα,α0,1, $${{\left[ uv \right]}^{\alpha }}={{\left[ u \right]}^{\alpha }}{{\left[ v \right]}^{\alpha }},\forall \alpha \in \left[ 0,1 \right],$$

where

uαvα=u¯a,u¯αv¯a,v¯α=w¯a,w¯α,w¯a=minu¯av¯a,u¯av¯α,u¯αv¯a,u¯αv¯α,w¯a=maxu¯av¯a,u¯av¯α,u¯αv¯a,u¯αv¯α. $$\begin{align}& {{\left[ u \right]}^{\alpha }}{{\left[ v \right]}^{\alpha }}=\left[ {{\underline{u}}_{a}},{{{\bar{u}}}_{\alpha }} \right]\left[ {{\underline{v}}_{a}},{{{\bar{v}}}_{\alpha }} \right]=\left[ {{\underline{w}}_{a}},{{{\bar{w}}}_{\alpha }} \right], \\ & {{\underline{w}}_{a}}=\text{min}\left\{ {{\underline{u}}_{a}}{{\underline{v}}_{a}},{{\underline{u}}_{a}}{{{\bar{v}}}_{\alpha }},{{{\bar{u}}}_{\alpha }}{{\underline{v}}_{a}},{{{\bar{u}}}_{\alpha }}{{{\bar{v}}}_{\alpha }} \right\}, \\ & {{\overline{w}}_{a}}=\text{max}\left\{ {{\underline{u}}_{a}}{{\underline{v}}_{a}},{{\underline{u}}_{a}}{{{\bar{v}}}_{\alpha }},{{{\bar{u}}}_{\alpha }}{{\underline{v}}_{a}},{{{\bar{u}}}_{\alpha }}{{{\bar{v}}}_{\alpha }} \right\}. \\ \end{align}$$

Definition 6. [15, 21] Let u,v 2F.If there exists w 2F such that u = v+w; then w is called the Hukuhara difference of fuzzy numbers u and v;and it is denoted by w = u⊖v:

Definition 7. [2,15] Let f : [a;b]RF and t0 [a,b] :We say that f is Hukuhara differential at t0, if there exists an element f' 0 (t0) 2F such that for all h > 0 sufficiently small, f t 0 +h f t 0 ,f t 0 f t 0 h $\exists f\left( {{t}_{0}}+h \right)\ominus f\left( {{t}_{0}} \right),\,\,f\left( {{t}_{0}} \right)\ominus f\left( {{t}_{0}}-h \right)$and the limits (in the metric D)

lim h0 f t 0 +h f t 0 h = lim h0 f t 0 f t 0 h h = f t 0 . $$\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( {{t}_{0}}+h \right)\ominus f\left( {{t}_{0}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( {{t}_{0}} \right)\ominus f\left( {{t}_{0}}-h \right)}{h}={f}'\left( {{t}_{0}} \right).$$

Definition 8. [12] If px=0,rx=1 ${p}'\left( x \right)=0,\,\,r\left( x \right)=1$and Ly=pxy˝+qxy $Ly=p\left( x \right)y''+q\left( x \right)y$in the fuzzy differential equation pxy+qxy+λrxy=0,px,px,qx,rx, ${{\left( p\left( x \right){y}' \right)}^{\prime }}+q\left( x \right)y+\lambda r\left( x \right)y=0,p\left( x \right),{p}'\left( x \right),q\left( x \right),r\left( x \right),$are continuous functions and positive, the fuzzydifferential equation

Ly+λy=0 $$Ly+\lambda y=0$$

is called a fuzzy Sturm-Liouville equation.

Definition 9. [12] yx,λ0α=y¯x,λ0,y¯x,λ00, ${{\left[ y\left( x,{{\lambda }_{0}} \right) \right]}^{\alpha }}=\left[ \underline{y}\left( x,{{\lambda }_{0}} \right),\bar{y}\left( x,{{\lambda }_{0}} \right) \right]\ne 0,$we say that λ = λ0 is eigenvalue of (2.1) if the fuzzy differential equation (2.1) has the nontrivial solutions y¯x,λ00,y¯x,λ00. $\underline{y}\left( x,{{\lambda }_{0}} \right)\ne 0,\bar{y}\left( x,{{\lambda }_{0}} \right)\ne 0.$

Findings and Main Results

Consider the fuzzy boundary value problem

τu=u˝+qxu, $$\tau u=u+q\left( x \right)u,$$ τu+λu=0,x1,1 $$\tau u+\lambda u=0,x\in \left( -1,1 \right)$$ u1+u1=0, $$u\left( -1 \right)+{u}'\left( -1 \right)=0,$$ λβu1+γu1=0, $$\lambda \beta u\left( 1 \right)+\gamma {u}'\left( 1 \right)=0,$$

where q(x) is continuous function and positive on [-1,1] , λ > 0 and β; γ > 0.

Let u1 (x;λ) and u2 (x;λ) be linearly independent solutions of the classical differential equation τu+λu=0. Then, the general solution of the fuzzy differential equation (3.1) is

ux,λα=u¯αx,λ,u¯αx,λ, $${{\left[ u\left( x,\lambda \right) \right]}^{\alpha }}=\left[ {{\underline{u}}_{\alpha }}\left( x,\lambda \right),{{{\bar{u}}}_{\alpha }}\left( x,\lambda \right) \right],$$ u¯αx,λ=aαλu1x+λ+bαλu2x+λ, $${{\underline{u}}_{\alpha }}\left( x,\lambda \right)={{a}_{\alpha }}\left( \lambda \right){{u}_{1}}\left( x+\lambda \right)+{{b}_{\alpha }}\left( \lambda \right){{u}_{2}}\left( x+\lambda \right),$$

Also,

u¯αx,λ=cαλu1x,λ+dαλu2x,λ. $${{\bar{u}}_{\alpha }}\left( x,\lambda \right)={{c}_{\alpha }}\left( \lambda \right){{u}_{1}}\left( x,\lambda \right)+{{d}_{\alpha }}\left( \lambda \right){{u}_{2}}\left( x,\lambda \right).$$ φx,λα=φ¯αx,λ,φ¯αx,λ $${{\left[ \varphi \left( x,\lambda \right) \right]}^{\alpha }}=\left[ {{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right),{{{\bar{\varphi }}}_{\alpha }}\left( x,\lambda \right) \right]$$

be the solution of the equation (3.1) satisfying the conditions

u1=1,u´1=1 $$u\left( -1 \right)=1,u\acute{\ }\left( -1 \right)=-1$$

and

χx,λα=χ¯αx,λ,χ¯αx,λ $${{\left[ \chi \left( x,\lambda \right) \right]}^{\alpha }}=\left[ {{\underline{\chi }}_{\alpha }}\left( x,\lambda \right),{{{\bar{\chi }}}_{\alpha }}\left( x,\lambda \right) \right]$$

be the solution of the equation (3.1) satisfying the conditions

u1=γ,u1=λβ $$u\left( 1 \right)=\gamma ,{u}'\left( 1 \right)=-\lambda \beta $$

where

φ¯αx,λ+c¯1αλu1x,λ+c¯2αλu2x,λ,φ¯αx,λ+c¯1αλu1x,λ+c¯2αλu2x,λ $$\begin{align}& {{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right)+{{\underline{c}}_{1\alpha }}\left( \lambda \right){{u}_{1}}\left( x,\lambda \right)+{{\underline{c}}_{2\alpha }}\left( \lambda \right){{u}_{2}}\left( x,\lambda \right), \\ & {{{\bar{\varphi }}}_{\alpha }}\left( x,\lambda \right)+{{{\bar{c}}}_{1\alpha }}\left( \lambda \right){{u}_{1}}\left( x,\lambda \right)+{{{\bar{c}}}_{2\alpha }}\left( \lambda \right){{u}_{2}}\left( x,\lambda \right) \\ \end{align}$$ χ¯αx,λ=c¯3αλu1x,λ+c¯4αλu2x,λχ¯αx,λ=c¯3αλu1x,λ+c¯4αλu2x,λ. $$\begin{align}& {{\underline{\chi }}_{\alpha }}\left( x,\lambda \right)={{\underline{c}}_{3\alpha }}\left( \lambda \right){{u}_{1}}\left( x,\lambda \right)+{{\underline{c}}_{4\alpha }}\left( \lambda \right){{u}_{2}}\left( x,\lambda \right) \\ & {{{\bar{\chi }}}_{\alpha }}\left( x,\lambda \right)={{{\bar{c}}}_{3\alpha }}\left( \lambda \right){{u}_{1}}\left( x,\lambda \right)+{{{\bar{c}}}_{4\alpha }}\left( \lambda \right){{u}_{2}}\left( x,\lambda \right). \\ \end{align}$$

From here, yields

Wφ¯α,χ¯αx,λ=c¯1αλc¯4αλc¯2αλc¯3αλWu1,u2x,λ $$W\left( {{\underline{\varphi }}_{\alpha }},{{\underline{\chi }}_{\alpha }} \right)\left( x,\lambda \right)=\left( {{\underline{c}}_{1\alpha }}\left( \lambda \right){{\underline{c}}_{4\alpha }}\left( \lambda \right)-{{\underline{c}}_{2\alpha }}\left( \lambda \right){{\underline{c}}_{3\alpha }}\left( \lambda \right) \right)W\left( {{u}_{1}},{{u}_{2}} \right)\left( x,\lambda \right)$$ Wφ¯α,χ¯αx,λ=c¯1αλc¯4αλc¯2αλc¯3αλWu1,u2x,λ $$W\left( {{{\bar{\varphi }}}_{\alpha }},{{{\bar{\chi }}}_{\alpha }} \right)\left( x,\lambda \right)=\left( {{{\bar{c}}}_{1\alpha }}\left( \lambda \right){{{\bar{c}}}_{4\alpha }}\left( \lambda \right)-{{{\bar{c}}}_{2\alpha }}\left( \lambda \right){{{\bar{c}}}_{3\alpha }}\left( \lambda \right) \right)W\left( {{u}_{1}},{{u}_{2}} \right)\left( x,\lambda \right)$$

Also, since u1 (x;λ) and u2 (x;λ) are linearly independent solutions of the classical differential equation τu+λu=0, $\tau u+\lambda u=0,$the solution of the equation is

ux,λ=aλu1x,λ+bλu2x,λ. $$u\left( x,\lambda \right)=a\left( \lambda \right){{u}_{1}}\left( x,\lambda \right)+b\left( \lambda \right){{u}_{2}}\left( x,\lambda \right).$$

φ(x;λ) be the solution of the classical differential equation τu+lu = 0 satisfying the conditions u 1 = $u\left( -1 \right)=$ 1,u1=1. $1,{u}'\left( -1 \right)=-1.$Using boundary conditions, we have

aλu11,λ+bλu21,λ=1, $$a\left( \lambda \right){{u}_{1}}\left( -1,\lambda \right)+b\left( \lambda \right){{u}_{2}}\left( -1,\lambda \right)=1,$$ aλu11,λ+bλu21,λ=1. $$a\left( \lambda \right){{{u}'}_{1}}\left( -1,\lambda \right)+b\left( \lambda \right){{{u}'}_{2}}\left( -1,\lambda \right)=-1.$$

From this, a(λ) , b(λ) are obtained as

aλ=u21,λ+u21,λWu1,u21,λ,bλ=u11,λu11,λWu1,u21,λ $$a\left( \lambda \right)=\frac{{{{{u}'}}_{2}}\left( -1,\lambda \right)+{{u}_{2}}\left( -1,\lambda \right)}{W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)},b\left( \lambda \right)=\frac{-{{u}_{1}}\left( -1,\lambda \right)-{{{{u}'}}_{1}} \& \left( -1,\lambda \right)}{W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)}$$

Then,

φx,λ=1Wu1,u21,λu21,λ+u21,λu1x,λu21,λ+u11,λu2x,λ. $$\begin{align}& \varphi \left( x,\lambda \right)=\frac{1}{W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)}\left\{ \left( {{{{u}'}}_{2}}\left( -1,\lambda \right)+{{u}_{2}}\left( -1,\lambda \right) \right){{u}_{1}}\left( x,\lambda \right) \right. \\ & \left. \ \ \ \ \ \ \ \ \ \ \ \ \ \ -\left( {{u}_{2}}\left( -1,\lambda \right)+{{{{u}'}}_{1}}\left( -1,\lambda \right) \right){{u}_{2}}\left( x,\lambda \right) \right\}. \\ \end{align}$$

Again,χ (x,λ) be the solution of the classical differential equation τu+lu = 0 satisfying the conditions u1=γ,u1=λβ. $u\left( 1 \right)=\gamma ,u\left( 1 \right)=-\lambda \beta .$Similarly, χ(x;λ) is obtained as

χx,λ=1Wu1,u21,λλβu21,λ+γu2´1,λu1x,λλβu11,λ+γu1´1,λu2x,λ $$\begin{align}& \chi \left( x,\lambda \right)=\frac{1}{W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)}\left\{ \left( \lambda \beta {{u}_{2}}\left( 1,\lambda \right)+\gamma u_{2}^{\acute{\ }}\left( 1,\lambda \right) \right){{u}_{1}}\left( x,\lambda \right) \right. \\ & \left. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -\left( \lambda \beta {{u}_{1}}\left( 1,\lambda \right)+\gamma u_{1}^{\acute{\ }}\left( 1,\lambda \right) \right){{u}_{2}}\left( x,\lambda \right) \right\} \\ \end{align}$$

Thus,

φx,λα=φ¯αx,λ,φ¯αx,λ=c1α,c2αφx,λ $${{\left[ \varphi \left( x,\lambda \right) \right]}^{\alpha }}=\left[ {{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right),{{{\bar{\varphi }}}_{\alpha }}\left( x,\lambda \right) \right]=\left[ {{c}_{1}}\left( \alpha \right),{{c}_{2}}\left( \alpha \right) \right]\varphi \left( x,\lambda \right)$$

is the solution of the equation (3.1) satisfying the conditions (3.4) and

χx,λα=χ¯αx,λ,χ¯αx,λ=c1α,c2αχx,λ $${{\left[ \chi \left( x,\lambda \right) \right]}^{\alpha }}=\left[ {{\underline{\chi }}_{\alpha }}\left( x,\lambda \right),{{{\bar{\chi }}}_{\alpha }}\left( x,\lambda \right) \right]=\left[ {{c}_{1}}\left( \alpha \right),{{c}_{2}}\left( \alpha \right) \right]\chi \left( x,\lambda \right)$$

is the solution of the equation (3.1) satisfying the conditions (3.5), where c1α,c2α=1α. $\left[ {{c}_{1}}\left( \alpha \right),{{c}_{2}}\left( \alpha \right) \right]={{\left[ 1 \right]}^{\alpha }}.$We take 1α=α,2α. ${{\left[ 1 \right]}^{\alpha }}=\left[ \alpha ,2-\alpha \right].$From here,

W¯αx,λ=α2φx,λχx,λχx,λφx,λ $${{\underline{W}}_{\alpha }}\left( x,\lambda \right)={{\alpha }^{2}}\left( \varphi \left( x,\lambda \right){\chi }'\left( x,\lambda \right)-\chi \left( x,\lambda \right){\varphi }'\left( x,\lambda \right) \right)$$ W¯αx,λ=2α2φx,λχx,λχx,λφx,λ $${{\overline{W}}_{\alpha }}\left( x,\lambda \right)={{\left( 2-\alpha \right)}^{2}}\left( \varphi \left( x,\lambda \right){\chi }'\left( x,\lambda \right)-\chi \left( x,\lambda \right){\varphi }'\left( x,\lambda \right) \right)$$

are obtained. Computing the value φx,λχx,λχx,λφx,λ, $\varphi \left( x,\lambda \right){\chi }'\left( x,\lambda \right)-\chi \left( x,\lambda \right){\varphi }'\left( x,\lambda \right),$we have

Wu1,u2x,λWu1,u21,λWu1,u21,λu11,λ+u1´1,λλβu21,λ+γu2´1,λu21,λ+u2´1,λλβu11,λ+γu1´1,λ $$\begin{align}& \frac{W\left( {{u}_{1}},{{u}_{2}} \right)\left( x,\lambda \right)}{W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)W\left( {{u}_{1}},{{u}_{2}} \right)\left( 1,\lambda \right)}\left\{ \left( {{u}_{1}}\left( -1,\lambda \right)+u_{1}^{\acute{\ }}\left( -1,\lambda \right) \right)\left( \lambda \beta {{u}_{2}}\left( 1,\lambda \right)+\gamma u_{2}^{\acute{\ }}\left( 1,\lambda \right) \right) \right. \\ & -\left. \left( {{u}_{2}}\left( -1,\lambda \right)+u_{2}^{\acute{\ }}\left( -1,\lambda \right) \right)\left( \lambda \beta {{u}_{1}}\left( 1,\lambda \right)+\gamma u_{1}^{\acute{\ }}\left( 1,\lambda \right) \right) \right\} \\ \end{align}$$

Considering the 3.7), the value is c¯1αλc¯4αλc¯2αλc¯3αλ ${{\underline{c}}_{1\alpha }}\left( \lambda \right){{\underline{c}}_{4\alpha }}\left( \lambda \right)-{{\underline{c}}_{2\alpha }}\left( \lambda \right){{\underline{c}}_{3\alpha }}\left( \lambda \right)$

α2Wu1,u21,λWu1,u21,λu11,λ+u1´1,λλβu21,λ+γu2´1,λu21,λ+u2´1,λλβu11,λ+γu1´1,λ $$\begin{align}& \frac{{{\alpha }^{2}}}{W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)}\left\{ \left( {{u}_{1}}\left( -1,\lambda \right)+u_{1}^{\acute{\ }}\left( -1,\lambda \right) \right)\left( \lambda \beta {{u}_{2}}\left( 1,\lambda \right)+\gamma u_{2}^{\acute{\ }}\left( 1,\lambda \right) \right) \right. \\ & \left. -\left( {{u}_{2}}\left( -1,\lambda \right)+u_{2}^{\acute{\ }}\left( -1,\lambda \right) \right)\left( \lambda \beta {{u}_{1}}\left( 1,\lambda \right)+\gamma u_{1}^{\acute{\ }}\left( 1,\lambda \right) \right) \right\} \\ \end{align}$$

and the value c¯1αλc¯4αλc¯2αλc¯3αλ ${{\bar{c}}_{1\alpha }}\left( \lambda \right){{\bar{c}}_{4\alpha }}\left( \lambda \right)-{{\bar{c}}_{2\alpha }}\left( \lambda \right){{\bar{c}}_{3\alpha }}\left( \lambda \right)$is

2α2Wu1,u21,λWu1,u21,λu11,λ+u1´1,λλβu21,λ+γu2´1,λu21,λ+u2´1,λλβu11,λ+γu1´1,λ $$\begin{align}& \frac{{{\left( 2-\alpha \right)}^{2}}}{W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)W\left( {{u}_{1}},{{u}_{2}} \right)\left( -1,\lambda \right)}\left\{ \left( {{u}_{1}}\left( -1,\lambda \right)+u_{1}^{\acute{\ }}\left( -1,\lambda \right) \right)\left( \lambda \beta {{u}_{2}}\left( 1,\lambda \right)+\gamma u_{2}^{\acute{\ }}\left( 1,\lambda \right) \right) \right. \\ & \left. -\left( {{u}_{2}}\left( -1,\lambda \right)+u_{2}^{\acute{\ }}\left( -1,\lambda \right) \right)\left( \lambda \beta {{u}_{1}}\left( 1,\lambda \right)+\gamma u_{1}^{\acute{\ }}\left( 1,\lambda \right) \right) \right\} \\ \end{align}$$

Consequently,

Wφ¯α,χ¯αx,λ=α22α2Wφ¯α,χ¯αx,λ. $$W\left( {{\underline{\varphi }}_{\alpha }},{{\underline{\chi }}_{\alpha }} \right)\left( x,\lambda \right)=\frac{{{\alpha }^{2}}}{{{\left( 2-\alpha \right)}^{2}}}W\left( {{{\bar{\varphi }}}_{\alpha }},{{{\bar{\chi }}}_{\alpha }} \right)\left( x,\lambda \right).$$

Theorem 1. The Wronskian functions Wφ¯α,χ¯α $W\left( {{\underline{\varphi }}_{\alpha }},{{\underline{\chi }}_{\alpha }} \right)$(x;λ) and W φ¯α,χ¯α $\left( {{{\bar{\varphi }}}_{\alpha }},{{{\bar{\chi }}}_{\alpha }} \right)$(x;λ) are independent of variable x for x ∈ (1;1), where functions φα¯,χα¯,φ¯α,χ¯α $\underline{{{\varphi }_{\alpha }}},\underline{{{\chi }_{\alpha }}},{{\bar{\varphi }}_{\alpha }},{{\bar{\chi }}_{\alpha }}$are the solution of the fuzzy boundary value problem (3.1)-(3.3).

Proof. Derivating of equations W φ¯α,χ¯α $\left( {{\underline{\varphi }}_{\alpha }},{{\underline{\chi }}_{\alpha }} \right)$(x;λ) and W φ¯α,χ¯α $\left( {{{\bar{\varphi }}}_{\alpha }},{{{\bar{\chi }}}_{\alpha }} \right)$(x;λ) according to variable x and using the functions φx,λα,χx,λα ${{\left[ \varphi \left( x,\lambda \right) \right]}^{\alpha }},{{\left[ \chi \left( x,\lambda \right) \right]}^{\alpha }}$are the solutions of the equation (3.1)

W´φ¯α,χ¯αx,λ=0andW´φ¯α,χ¯αx,λ=0. $$W\acute{\ }\left( {{\underline{\varphi }}_{\alpha }},{{\underline{\chi }}_{\alpha }} \right)\left( x,\lambda \right)=0\ and\,W\acute{\ }\left( {{{\bar{\varphi }}}_{\alpha }},{{{\bar{\chi }}}_{\alpha }} \right)\left( x,\lambda \right)=0.$$

are obtained. The proof is complete.

W¯αλ=Wφ¯α,χ¯αx,λ=W¯αλ=Wφ¯α,χ¯αx,λ. $${{\underline{W}}_{\alpha }}\left( \lambda \right)=W\left( {{\underline{\varphi }}_{\alpha }},{{\underline{\chi }}_{\alpha }} \right)\left( x,\lambda \right)={{\overline{W}}_{\alpha }}\left( \lambda \right)=W\left( {{{\bar{\varphi }}}_{\alpha }},{{{\bar{\chi }}}_{\alpha }} \right)\left( x,\lambda \right).$$

Theorem 2. The eigenvalues of the fuzzy boundary value problem (3.1)-(3.3) if and only if are consist of the zeros of functionsW¯αλ ${{\underline{W}}_{\alpha }}\left( \lambda \right)$andW¯αλ. ${{\overline{W}}_{\alpha }}\left( \lambda \right).$

Proof. Let be λ = λ0 is the eigenvalue. We show that W¯αλ0=0 ${{\underline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)=0$and W¯αλ0=0. ${{\overline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)=0.$We assume that W¯αλ00orW¯αλ00. ${{\underline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)\ne 0\,\text{or}\,{{\overline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)\ne 0\,.$Let be W¯αλ00. ${{\underline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)\ne 0.$Then, the functions φ¯αx,λ0 ${{\underline{\varphi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)$and χ¯αx,λ0 ${{\underline{\chi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)$are linearly independent. So, the general solution of the equation (3.1)

ux,λ0α=u¯αx,λ0,u¯αx,λ0, $${{\left[ u\left( x,{{\lambda }_{0}} \right) \right]}^{\alpha }}=\left[ {{\underline{u}}_{\alpha }}\left( x,{{\lambda }_{0}} \right),{{{\bar{u}}}_{\alpha }}\left( x,{{\lambda }_{0}} \right) \right],$$ u¯αx,λ0=aαλ0φ¯αx,λ0+bαλ0χ¯αx,λ0, $${{\underline{u}}_{\alpha }}\left( x,{{\lambda }_{0}} \right)={{a}_{\alpha }}\left( {{\lambda }_{0}} \right){{\underline{\varphi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)+{{b}_{\alpha }}\left( {{\lambda }_{0}} \right){{\underline{\chi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right),$$ u¯αx,λ0=cαλ0φ¯αx,λ0+dαλ0χ¯αx,λ0. $${{\bar{u}}_{\alpha }}\left( x,{{\lambda }_{0}} \right)={{c}_{\alpha }}\left( {{\lambda }_{0}} \right){{\bar{\varphi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)+{{d}_{\alpha }}\left( {{\lambda }_{0}} \right){{\bar{\chi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right).$$

Using the boundary condition (3.2) and using the solution function φx,λ0α=φ¯αx,λ0,φ¯αx,λ0 ${{\left[ \varphi \left( x,{{\lambda }_{0}} \right) \right]}^{\alpha }}=\left[ {{\underline{\varphi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right),{{{\bar{\varphi }}}_{\alpha }}\left( x,{{\lambda }_{0}} \right) \right]$satisfies the boundary condition (3.2),

bαλ0χ¯α1,λ0+χ¯α1,λ0=0, $${{b}_{\alpha }}\left( {{\lambda }_{0}} \right)\left( {{\underline{\chi }}_{\alpha }}\left( -1,{{\lambda }_{0}} \right)+{{\underline{\chi }}^{\prime }}_{\alpha }\left( -1,{{\lambda }_{0}} \right) \right)=0,$$ dαλ0χ¯α1,λ0+χ¯α1,λ0=0 $${{d}_{\alpha }}\left( {{\lambda }_{0}} \right)\left( {{{\bar{\chi }}}_{\alpha }}\left( -1,{{\lambda }_{0}} \right)+{{{\bar{\chi }}}^{\prime }}_{\alpha }\left( -1,{{\lambda }_{0}} \right) \right)=0$$

are obtained. Again, using (3.4), (3.10), we have

bαλ0W¯αλ0=0,dαλ0W¯αλ0=0. $${{b}_{\alpha }}\left( {{\lambda }_{0}} \right){{\underline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)=0,{{d}_{\alpha }}\left( {{\lambda }_{0}} \right){{\overline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)=0.$$

From this, since W¯αλ00,bαλ0=0 ${{\underline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)\ne 0,{{b}_{\alpha }}\left( {{\lambda }_{0}} \right)=0$is obtained. Similarly, using the boundary condition (3.3), we obtained aαλ0=0. ${{a}_{\alpha }}\left( {{\lambda }_{0}} \right)=0.$Thus, u¯αx.λ0=0,λ0 ${{\underline{u}}_{\alpha }}\left( x.{{\lambda }_{0}} \right)=0,{{\lambda }_{0}}$is not an eigenvalue. That is, we have a contradiction. Similarly, ifW¯αλ00,u¯αx,λ0=0 $\,{{\overline{W}}_{\alpha }}\left( {{\lambda }_{0}} \right)\ne 0\,,{{\bar{u}}_{\alpha }}\left( x,{{\lambda }_{0}} \right)=0\,$is obtained. λ0 is not an eigenvalue.

Let λ0 be zero ofW¯αλ ${{\underline{\text{W}}}_{\alpha }}\left( \lambda \right)$andW¯αλ. ${{\overline{W}}_{\alpha }}\left( \lambda \right).$Then,

φ¯αx,λ0=k1χ¯αx,λ0,φ¯αx,λ0=k2χ¯αx,λ0. $${{\underline{\varphi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)={{k}_{1}}{{\underline{\chi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right),{{\bar{\varphi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)={{k}_{2}}{{\bar{\chi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right).$$

That is, the functions φ¯α,χ¯α ${{\underline{\varphi }}_{\alpha }},{{\underline{\chi }}_{\alpha }}$and φ¯α,χ¯α ${{\bar{\varphi }}_{\alpha }},{{\bar{\chi }}_{\alpha }}$are linearly dependent. Also, since χx,λα ${{\left[ \chi \left( x,\lambda \right) \right]}^{\alpha }}$satisfies the boundary condition (3.3), χ¯αx,λ0 ${{\underline{\chi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)$and χ¯αx,λ0 ${{\bar{\chi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)$satisfy the boundary condition (3.3). In addition, from (3.14) the functions φ¯α ${{\underline{\varphi }}_{\alpha }}$x;λ0) and φ¯αx,λ0 ${{\bar{\varphi }}_{\alpha }}\left( x,{{\lambda }_{0}} \right)$satisfy the boundary condition (3.3). So, φx,λ0α ${{\left[ \varphi \left( x,{{\lambda }_{0}} \right) \right]}^{\alpha }}$satisfies the boundary condition (3.3). Hence, [φ(x;λ0)]a is the solution of the boundary value problem (3.1)-(3.3) for λ = λ0. Thus, λ = λ0 is the eigenvalue. The proof is complete.

Lemma 1. Let λ = s2. The lower and the upper solutions φ¯αx,λ,φ¯αx,λ ${{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right),{{\bar{\varphi }}_{\alpha }}\left( x,\lambda \right)$satisfy the following integral equations for k=0 and k=1:

φ¯αx,λk=Cossx+1k1sSinsx+1k+1s1xSinsxykqyφ¯αx,λkdy, $$\begin{align}& {{\left( {{\underline{\text{ }\!\!\varphi\!\!\text{ }}}_{\alpha }}\left( x,\lambda \right) \right)}^{\left( k \right)}}={{\left( Cos\left( s\left( x+1 \right) \right) \right)}^{\left( k \right)}}-\frac{1}{s}{{\left( Sin\left( s\left( x+1 \right) \right) \right)}^{\left( k \right)}} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,\,\,+\frac{1}{s}\int\limits_{-1}^{x}{{{\left( Sin\left( s\left( x-y \right) \right) \right)}^{\left( k \right)}}q\left( y \right)}{{\left( {{\underline{\text{ }\!\!\varphi\!\!\text{ }}}_{\alpha }}\left( x,\lambda \right) \right)}^{\left( k \right)}}dy, \\ \end{align}$$ φ ¯ α x , λ k = C o s s x + 1 k 1 s Si n s x + 1 k + 1 s 1 x Si n s x y k q y φ ¯ α x , λ k d y . $$\begin{align}& {{\left( {{{\bar{\varphi}}}_{\alpha }}\left( x,\lambda \right) \right)}^{\left( k \right)}}={{\left( Cos\left( s\left( x+1 \right) \right) \right)}^{\left( k \right)}}-\frac{1}{s}{{\left( \operatorname{Si}n\left( s\left( x+1 \right) \right) \right)}^{\left( k \right)}}+ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,\,\,\,\,\,\,\,\,\frac{1}{s}\int\limits_{-1}^{x}{{{\left( \operatorname{Si}n\left( s\left( x-y \right) \right) \right)}^{\left( k \right)}}q\left( y \right)}{{\left( {{\bar{\varphi}}_{\alpha }}\left( x,\lambda \right) \right)}^{\left( k \right)}}dy. \\ \end{align}$$

Proof. Since

φx,λα=φ¯αx,λ,φ¯αx,λ $${{\left[ \varphi \left( x,\lambda \right) \right]}^{\alpha }}=\left[ {{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right),{{{\bar{\varphi }}}_{\alpha }}\left( x,\lambda \right) \right]$$

is the solution of the equation (3.1), the equation

φ¯αy,λ,φ¯αy,λ+qyφ¯αy,λ,φ¯αy,λ+λφ¯αy,λ,φ¯αy,λ=0 $${{\left[ {{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right),{{{\bar{\varphi }}}_{\alpha }}\left( y,\lambda \right) \right]}^{\prime \prime }}+q\left( y \right)\left[ {{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right),{{{\bar{\varphi }}}_{\alpha }}\left( y,\lambda \right) \right]+\lambda \left[ {{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right),{{{\bar{\varphi }}}_{\alpha }}\left( y,\lambda \right) \right]=0$$

is provided. Using the Hukuhara differentiability and fuzzy arithmetic,

φ¯αy,λ,φ¯αy,λ+qyφ¯αy,λ,qyφ¯αy,λ+λφ¯αy,λ,λφ¯αy,λ=0 $$\left[ {{\underline{\varphi }}^{\prime \prime }}_{\alpha }\left( y,\lambda \right),{{{\bar{\varphi }}}^{\prime \prime }}_{\alpha }\left( y,\lambda \right) \right]+\left[ q\left( y \right){{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right),q\left( y \right){{{\bar{\varphi }}}_{\alpha }}\left( y,\lambda \right) \right]+\left[ \lambda {{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right),\lambda {{{\bar{\varphi }}}_{\alpha }}\left( y,\lambda \right) \right]=0$$

is obtained. From here, yields

φ¯αy,λ+qyφ¯αy,λ+λφ¯αy,λ=0,φ¯αy,λ+qyφ¯αy,λ+λφ¯αy,λ=0. $$\begin{align}& {{\underline{\varphi }}^{\prime \prime }}_{\alpha }\left( y,\lambda \right)+q\left( y \right){{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right)+\lambda {{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right)=0, \\ & {{{\bar{\varphi }}}^{\prime \prime }}_{\alpha }\left( y,\lambda \right)+q\left( y \right){{{\bar{\varphi }}}_{\alpha }}\left( y,\lambda \right)+\lambda {{{\bar{\varphi }}}_{\alpha }}\left( y,\lambda \right)=0. \\ \end{align}$$

Substituing the identity qyφ¯αy,λ=λφ¯αy,λφ¯ay,λ $q\left( y \right){{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right)=-\lambda {{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right)-{{\underline{\varphi }}^{\prime \prime }}_{a}\left( y,\lambda \right)$in the right side of (3.15)

1xSinsxyqyφ¯αy,λdy=s21xSinsxyφ¯αy,λdy1xSinsxyφ¯αx,λdy $$\begin{align} & \int\limits_{-1}^{x}{\text{Si}n\left( s\left( x-y \right) \right)q\left( y \right){{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right)dy=-{{s}^{2}}}\int\limits_{-1}^{x}{\text{Si}n\left( s\left( x-y \right) \right){{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right)dy} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -\int\limits_{-1}^{x}{\text{Si}n\left( s\left( x-y \right) \right)\underline{{{\varphi }''}}{{ \& }_{\alpha }}\left( x,\lambda \right)dy} \\ \end{align}$$

On integrating by parts twice and using (3.4)

1xSinsxyφ¯αx,λdy=Sinsx+1sφ¯αx,λ+sCossx+1+s21xSinsxyφ¯αy,λdy $$\begin{align}& \int\limits_{-1}^{x}{\text{Si}n\left( s\left( x-y \right) \right){{\underline{\varphi }}^{\prime \prime }}_{\alpha }\left( x,\lambda \right)dy}=\text{Si}n\left( s\left( x+1 \right) \right)-s{{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right)+sCos\left( s\left( x+1 \right) \right) \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +{{s}^{2}}\int\limits_{-1}^{x}{\text{Si}n}\left( s\left( x-y \right) \right){{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right)dy \\ \end{align}$$

is obtained. Substituing this back into the previous equality yields

1xSinsxyqyφ¯αy,λdy=Sinsx+1sφ¯αx,λ+sCossx+1 $$\int\limits_{-1}^{x}{\text{Si}n\left( s\left( x-y \right) \right)q\left( y \right){{\underline{\varphi }}_{\alpha }}\left( y,\lambda \right)dy=\text{Si}n\left( s\left( x+1 \right) \right)-s{{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right)+sCos\left( s\left( x+1 \right) \right)}$$

From here, we have

φ¯αx,λ=Cossx+11sSinsx+1+1xSinsxyqyφ¯αx,λdy. $${{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right)=Cos\left( s\left( x+1 \right) \right)-\frac{1}{s}\text{Si}n\left( s\left( x+1 \right) \right)+\int\limits_{-1}^{x}{\text{Si}n\left( s\left( x-y \right) \right)q\left( y \right){{\underline{\varphi }}_{\alpha }}\left( x,\lambda \right)dy.}$$

Similarly φ¯αx,λ ${{\bar{\varphi }}_{\alpha }}\left( x,\lambda \right)$is found. Derivating in these equations according to x, the derivative equations are obtained.

Lemma 2. Let λ = s2. The lower and the upper solutions χ¯αx,λ,χ¯αx,λ ${{\underline{\chi }}_{\alpha }}\left( x,\lambda \right),{{\bar{\chi }}_{\alpha }}\left( x,\lambda \right)$satisfy the following integral equations for k=0 and k=1:

χ_αx,λk=βCossx+1k+λαsSinsx+1k1sx1Sinsxykqyχ_αx,λkdy $$\begin{align}& {{\left( {{\underline{\chi }}_{\alpha }}\left( x,\lambda \right) \right)}^{\left( k \right)}}=-\beta {{\left( Cos\left( s\left( x+1 \right) \right) \right)}^{\left( k \right)}}+\frac{\lambda \alpha }{s}{{\left( Sin\left( s\left( x+1 \right) \right) \right)}^{\left( k \right)}} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,\,\,-\frac{1}{s}\int\limits_{x}^{1}{{{\left( Sin\left( s\left( x-y \right) \right) \right)}^{\left( k \right)}}q\left( y \right)}{{\left( {{\underline{\chi }}_{\alpha }}\left( x,\lambda \right) \right)}^{\left( k \right)}}dy \\ \end{align}$$ χ¯αx,λk=βCossx+1k+λαsSinsx+1k1sx1Sinsxykqyχ¯αx,λkdy. $$\begin{align}& {{\left( {{{\bar{\chi }}}_{\alpha }}\left( x,\lambda \right) \right)}^{\left( k \right)}}=-\beta {{\left( Cos\left( s\left( x+1 \right) \right) \right)}^{\left( k \right)}}+\frac{\lambda \alpha }{s}{{\left( Sin\left( s\left( x+1 \right) \right) \right)}^{\left( k \right)}} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,\,\,-\frac{1}{s}\int\limits_{x}^{1}{{{\left( Sin\left( s\left( x-y \right) \right) \right)}^{\left( k \right)}}q\left( y \right)}{{\left( {{{\bar{\chi }}}_{\alpha }}\left( x,\lambda \right) \right)}^{\left( k \right)}}dy. \\ \end{align}$$

Proof. Substituing the identity qyχ¯αy,λ=λχ¯αy,λχ¯ay,λ $q\left( y \right){{\underline{\chi }}_{\alpha }}\left( y,\lambda \right)=-\lambda {{\underline{\chi }}_{\alpha }}\left( y,\lambda \right)-{{\underline{\chi }}^{\prime \prime }}_{a}\left( y,\lambda \right)$in the right side of (3.17), integrating by parts twice and using (3.5) yields (3.17) for k=0. Similarly, the equation (3.18) is found for k=0. Derivating in these equations according to x, the derivative equations are obtained.

eISSN:
2444-8656
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics