Cite

Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254, 120147. https://doi.org/10.1016/j.jclepro.2020.120147 Search in Google Scholar

Cleary, R. W. & Ungs, M. J. (1992). Analytical models for groundwater pollution and hydrology (Report 78-WR-15). Princeton: PrincetonUniversity.Princeton University. Search in Google Scholar

Giergiczny, Z. (2006). Rola popiołów wapniowych i krzemionkowych w kształtowaniu właściwości współ-czesnych spoiw budowlanych i tworzyw cementowych. Kraków: Wydawnictwo Politechniki Krakowskiej. Search in Google Scholar

Hossain, K., Lachemi, M. & Easa, S. (2007). StabilizedsoilsStabilized soils for construction applications incorporating natural resources of Papua New Guinea. Resources, Conservation and Recycling, 51, 711–731. https://doi.org/10.1016/j.resconrec.2006.12.003 Search in Google Scholar

Kaniraj, S. & Havanagi, V. (1999). Compressive strength of cement stabilized fly ash-soil mixtures. Cement Concrete Research, 29 (5), 673–677. https://doi.org/10.1016/S0008-8846(99)00018-6 Search in Google Scholar

Kasprzyk, K., Kordylewski, W. & Zacharczuk, W. (2003). Modification of fly-ash by vitrification. Archivum Combustionis, 23 (1–2), 21–30. Search in Google Scholar

Kraszewski, C. (2009). Kruszywa i grunty związane hydraulicznie w konstrukcjach drogowych [Aggregates and hydraulically bound soils in road structures]. Drogo-wnictwo, 3, 98–103. Search in Google Scholar

Kruger, R. (1997). Fly ash beneficiation in South Africa: creating new opportunities in the market-place. Fuel, 76 (8), 777–779. https://doi.org/10.1016/S0016-2361(96)00190-1 Search in Google Scholar

Kukko, H. (2000). Stabilization of clay with inorganic by-products. Journal of Materials in Civil Engineering, 12(4), 307–309. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(307) Search in Google Scholar

Polski Komitet Normalizacyjny [PKN] (1988). Grunty budowlane. Badanie próbek gruntu (PN-88/B-04481:1988). Warszawa: Polski Komitet Normalizacyjny. Search in Google Scholar

Polski Komitet Normalizacyjny [PKN] (1997). Drogi samochodowe. Podbudowa i ulepszone podłoże z gruntu stabilizowanego cementem (PN-S-96012:1997). Warszawa: Polski Komitet Normalizacyjny. Search in Google Scholar

Querol, X., Moreno, N., Umana, J., Alastuey, A., Hernandez, E., Lopez-Soler, A. & Plana, F. (2002). SynthesisSynthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 50 (1–4), 413–423. https://doi.org/10.1016/S0166-5162(02)00124-6 Search in Google Scholar

Rafalski, L. (2007). Podbudowy drogowe. Warszawa: Wydawnictwo Instytutu Badawczego Dróg i Mostów. Search in Google Scholar

Rafalski, L. & Ćwiąkała, M. (2014). The Use of Logit Modelling for Designing Mixtures of Soils Stabilized with Hydraulic Binders. The Baltic Journal of Road and Bridge Engineering, 9 (3), 147–154. https://doi.org/10.3846/bjrbe.2014.19 Search in Google Scholar

Rafalski, L., Ćwiąkała, M., Gajewska, B. & Kraszewski, C. (2008). Badania związane z podłożem nawierzchni drogowej [Investigations on road subgrade]. Inżynieria Morska i Geotechnika, 39 (3), 165–170. Search in Google Scholar

Raupp-Pereira, F., Ball, R., Rocha, J., Labrincha, J. & Allen, G. (2008). Newwastebasedclinkers:Be-New waste based clinkers: Belite and lime formulations. Cement and Concrete Research, 38, 511–521. https://doi.org/10.1016/j.cemconres.2007.11.008 Search in Google Scholar

Sebök, T., Šimoník, J. & Kulísek, K. (2001). The compressive strength of samples containing fly ash with high content of calcium sulfate and calcium oxide. Cement and Concrete Research, 31 (7), 1101–1107. https://doi.org/10.1016/S0008-8846(01)00506-3 Search in Google Scholar

Shao, L., Liu, S., Du, Y., Jing, F. & Fang, L. (2008). Experimental study on the stabilization of organic clay with fly ash and cement mixed method. ASCE Geotechnical Special Publication, 179, 20–27. https://doi.org/10.1061/40972(311)3 Search in Google Scholar

Siswosoebrotho, B. I., Widodo, P. & Augusta, E. (2005). The influence of fines content and plasticity on the strength and permeability of aggregate for base course material. Proceedings of the Eastern Asia Society for Transportation Studies, 5, 845–856. Search in Google Scholar

Škvára, F., Kopecký, L., Šmilauer, V. & Bittnar, Z. (2009). Material and structural characterization of alkali acti-vated low-calcium brown coal fly ash. Journal of Hazardous Materials, 168, 711–720. https://doi.org/10.1016/j.jhazmat.2009.02.089 Search in Google Scholar

Sobczyk, M. (2008). Statystyka. Warszawa: Wydawnictwo Naukowe PWN. Search in Google Scholar

Widuch, A. (2012). Zastosowanie popiołów lotnych z węgla brunatnego do wzmacniania gruntów [The use of lignite fly ashes for soil improvement] (PhD thesis). University of Zielona Góra, Zielona Góra. Search in Google Scholar

Wigley, Williamson, J. & Gibb, W. (1997). The distribution of mineral matter in pulverized coal particles in relation to burnout behaviour. Fuel, 76(13), 1283–1288. https://doi.org/10.1016/S0016-2361(97)00139-7 Search in Google Scholar

Wu, H., Bryant, G. & Wall, T. (2000). The effect of pressure on ash formation during pulverized coal combustion. Energy and Fuels, 14 (4), 745–750. https://doi.org/10.1021/ef990080w Search in Google Scholar

Yan, L., Gupta, R. & Wall, T. (2002). A mathematical model of ash formation during pulverized coal combustion. Fuel, 81 (3), 337–344. https://doi.org/10.1016/S0016-2361(01)00166-1 Search in Google Scholar

eISSN:
2544-1760
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Architecture and Design, Architecture, Architects, Buildings, Cities, Regions, Landscape Architecture, Construction, Materials