A Longitudinal Network Analysis of the German Knowledge Economy from 2009 to 2019: Spatio-Temporal Dynamics at the City–Firm Nexus
, y
25 nov 2020
Acerca de este artículo
Categoría del artículo: research-article
Publicado en línea: 25 nov 2020
Páginas: 107 - 133
DOI: https://doi.org/10.21307/joss-2020-005
Palabras clave
© 2019 Silke Zöllner; published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

j_joss-2020-005_tab_005
Null model | Model 1 | Model 2 | Full model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate | Standard error | Convergence |
Estimate | Standard error | Convergence |
Estimate | Standard error | Convergence |
Estimate | Standard error | Convergence |
|
|
|
(0.0398) | 0.0435 |
|
(0.1566) | −0.0639 |
|
(0.3784) | −0.0069 |
|
(0.2869) | 0.0304 |
|
|
(0.0155) | −0.0730 |
|
(0.0377) | 0.0122 |
|
(0.0560) | 0.0209 | |||
|
|
(0.0016) | −0.0308 |
|
(0.0019) | −0.0746 |
|
(0.0021) | 0.0162 | |||
|
|
(0.0504) | −0.0303 |
|
(0.1279) | 0.0286 | ||||||
|
0.0007 | (0.0006) | −0.0152 |
|
(0.0013) | 0.0354 | ||||||
|
|
(0.1261) | 0.0154 | |||||||||
|
|
(0.0391) | 0.0450 | |||||||||
|
0.0435 | 0.0754 | 0.1570 | 0.2342 |
Changes in network 2009–2019_
2009 | 2019 | Change | ||
---|---|---|---|---|
|
0.086 | 0.099 | □ | |
|
2227 | 2559 | 640 new ties |
□ |
|
0.669 |
Modeling results_
Null model | Full model | |||||
---|---|---|---|---|---|---|
Estimate | Standard error | Convergence |
Estimate | Standard error | Convergence |
|
|
|
(0.0398) | 0.0435 |
|
(0.2869) | 0.0304 |
|
|
(0.0560) | 0.0209 | |||
|
|
(0.0021) | 0.0162 | |||
|
|
(0.1261) | 0.0154 | |||
|
|
(0.1279) | 0.0286 | |||
|
|
(0.0013) | 0.0354 | |||
|
|
(0.0391) | 0.0450 | |||
|
0.0435 | 0.2342 |
Translation of effects to be tested into RSiena_
Hypothesis | Effect | RSiena name | ForFormula |
---|---|---|---|
Density effect |
|
||
|
Firm activity | Outdegree-related activity (sqrt) effect |
|
|
Preferential attachment | Indegree-related popularity (sqrt) effect |
|
|
Firm-FUA assortativity | Out/in degree^(1/2) assortativity |
|
|
Network closure | Number of four-cycles |
|
|
Spatial spread |
|
|
|
|||
|
(FUA employment) | Covariate-related popularity |
|
Descriptive and modeling results for the three sectors_
Financial sectors | Service sectors | Creative sectors | |
---|---|---|---|
|
Banking and finance, insurance | Law, accounting, management/IT consulting | Information and communication services, Design, architecture and engineering, advertising and media |
#x03A3; | 35 firms | 56 firms | 36 firms |
|
0.750 | 0.723 | 0.518 |
|
−0.01 |
|
0.01 |
|
|
|
|
|
– |
|
|
|
– | −0.03 | – |
j_joss-2020-005_tab_006
Banking and finance | |
---|---|
Deutsche Bank | HSH Nordbank AG |
Commerzbank AG | Kreissparkasse Köln |
DZ Bank AG | Deutsche Postbank AG |
Landesbank Baden-Württemberg | DekaBank Deutsche Girozentrale |
BayernLB | Berliner Volksbank |
Hamburger Sparkasse AG | Gruppe Deutsche Börse |
Landesbank Hessen-Thüringen | ING-DiBa AG |
Sparkasse Köln Bonn | Aareal Bank AG |
NordLB |