Requiere autenticación

Review: the function of blood group–specific RBC membrane components

   | 18 may 2020

Cite

Reid ME, Lomas-Francis C.The blood group antigen factsbook. 2nd ed. San Diego:Academic Press, 2003.10.1016/B978-012586585-2/50007-XSearch in Google Scholar

Daniels G. Human blood groups. 2nd ed. Oxford: Blackwell Science, 2002.10.1002/9780470987018Search in Google Scholar

Reid ME, Mohandas N. RBC blood group antigens: structure and function. Semin Hematol 2004; 41:93-117.10.1053/j.seminhematol.2004.01.00115071789Search in Google Scholar

Moulds JM, Moulds JJ. Blood group associations with parasites, bacteria, and viruses. Transfus Med Rev 2000;14:302-11.10.1053/tmrv.2000.1622711055075Search in Google Scholar

Garratty G. Blood groups and disease: a historical perspective. Transfus Med Rev 2000;14:291-301.10.1053/tmrv.2000.1622811055074Search in Google Scholar

Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. 3rd ed. New York & London: Garland Publishing, Inc, 1994.Search in Google Scholar

Bruce LJ, Beckmann R, Ribeiro ML, et al.A band 3based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 2003; 101:4180-8.10.1182/blood-2002-09-282412531814Search in Google Scholar

Le Van Kim C, Collec E, Kroviarski Y, et al. Interaction of Kell glycoprotein with the erythroid membrane skeleton. Vox Sang 2002;83:26.Search in Google Scholar

Kroviarski Y, El Nemer W, Gane P, et al. Direct interaction between the Lu/B-CAM adhesion glycoproteins and er ythroid spectrin. Br J Haematol 2004;126:255-64.10.1111/j.1365-2141.2004.05010.x15238148Search in Google Scholar

An X, Guo X, Wu Y, et al. Phosphatidylserine binding sites in red cell spectrin. Blood Cells Mol Dis 2004;32:430-2.10.1016/j.bcmd.2004.02.00115121103Search in Google Scholar

An X, Guo X, Sum H, et al. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 2004;43:310-5.10.1021/bi035653h14717584Search in Google Scholar

Mouro-Chanteloup I, Delaunay J, Gane P, et al. Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47. Blood 2003;101:338-44.10.1182/blood-2002-04-128512393467Search in Google Scholar

Nicolas V, Le Van KC, Gane P, et al. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J Biol Chem 2003;278:25526-33.10.1074/jbc.M302816200Search in Google Scholar

Tanner MJ. The structure and function of band 3 (AE1): recent developments (review). Mol Membr Biol 1997;14:155-65.10.3109/09687689709048178Search in Google Scholar

Bruce LJ,Tanner MJ. Erythroid band 3 variants and disease. Baillieres Best Pract Res Clin Haematol 1999;12:637-54.10.1053/beha.1999.0046Search in Google Scholar

Inaba M,Yawata A, Koshino I,et al. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J Clin Invest 1996;97:1804-17.10.1172/JCI118610Search in Google Scholar

Ribeiro ML, Alloisio N, Almeida H, et al. Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood 2000;96:1602-4.Search in Google Scholar

Southgate CD, Chishti AH, Mitchell B, et al. Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton. Nat Genet 1996;14:227-30.10.1038/ng1096-227Search in Google Scholar

Groves JD, Tanner MJ. The effects of glycophorin A on the expression of the human red cell anion transporter (band 3) in Xenopus oocytes. J Membr Biol 1994;140:81-8.Search in Google Scholar

Bruce LJ, Groves JD, Okubo Y, et al. Altered band 3 structure and function in glycophorin A- and B-deficient (MkMk) RBCs. Blood 1994;84:916-22.10.1182/blood.V84.3.916.916Search in Google Scholar

Bruce LJ, Pan RJ, Cope DL, et al. Altered structure and anion transport properties of band 3 (AE1, SLC4A1) in human red cells lacking glycophorin A.J Biol Chem 2004;279:2414-20.10.1074/jbc.M309826200Search in Google Scholar

Wrong O, Bruce LJ, Unwin RJ, et al. Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int 2002; 62:10-9.10.1046/j.1523-1755.2002.00417.xSearch in Google Scholar

Tanner MJ. Band 3 anion exchanger and its involvement in erythrocyte and kidney disorders. Curr Opin Hematol 2002;9:133-9.10.1097/00062752-200203000-00009Search in Google Scholar

Cartron JP, Colin Y. Structural and functional diversity of blood group antigens. Transfus Clin Biol 2001;8:163-99.10.1016/S1246-7820(01)00142-2Search in Google Scholar

Eber S, Lux SE. Hereditary spherocytosis—defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol 2004;41:118-41.10.1053/j.seminhematol.2004.01.00215071790Search in Google Scholar

Avent ND, Reid ME. The Rh blood group system: a review [published erratum appears in Blood 2000 Apr 1;95(7):2197]. Blood 2000;95:375-87.Search in Google Scholar

Huang CH. Molecular insights into the Rh protein family and associated antigens. Curr Opin Hematol 1997;4:94-103.10.1097/00062752-199704020-000049107525Search in Google Scholar

Cartron JP. RH blood group system and molecular basis of Rh-deficiency. Baillieres Best Pract Res Clin Haematol 1999;12:655-89.10.1053/beha.1999.004710895258Search in Google Scholar

Beckmann R, Smythe JS,Anstee DJ,et al. Functional cell surface expression of band 3, the human RBC anion exchange protein (AE1), in K562 erythroleukemia cells: band 3 enhances the cell surface reactivity of Rh antigens. Blood 1998;92:4428-38.10.1182/blood.V92.11.4428Search in Google Scholar

Beckmann R, Smythe JS, Anstee DJ, et al. Coexpression of band 3 mutants and Rh polypeptides: differential effects of band 3 on the expression of the Rh complex containing D polypeptide and the Rh complex containing CcEe polypeptide. Blood 2001;97:2496-505.10.1182/blood.V97.8.2496Search in Google Scholar

Dahl KN, Westhoff CM, Discher DE. Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes. Blood 2003;101:1194-9.10.1182/blood-2002-04-118712393442Search in Google Scholar

Dahl KN, Parthasarathy R, Westhoff CM, et al. Protein 4.2 is critical to CD47-membrane skeleton attachment in human red cells. Blood 2004; 103:1131-6.10.1182/blood-2003-04-133114551146Search in Google Scholar

Bruce LJ, Ghosh S, King MJ, et al. Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex. Blood 2002;100:1878-85.10.1182/blood-2002-03-070612176912Search in Google Scholar

Huang CH, Liu PZ. New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells Mol Dis 2001;27:90-101.10.1006/bcmd.2000.035511358367Search in Google Scholar

Marini AM, Matassi G, Raynal V, et al. The human rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 2000;26:341-4.10.1038/8165611062476Search in Google Scholar

Westhoff CM, Ferreri-Jacobia M, Mak DO, et al. Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter.J Biol Chem 2002;277:12499-502.10.1074/jbc.C200060200Search in Google Scholar

Hemker MB, Cheroutre G,van Zwieten R, et al.The Rh complex exports ammonium from human RBCs. Br J Haematol 2003;122:333-40.10.1046/j.1365-2141.2003.04425.xSearch in Google Scholar

Soupene E, King N, Feild E, et al. Rhesus expression in a green alga is regulated by CO(2). Proc Natl Acad Sci U S A 2002;99:7769-73.10.1073/pnas.112225599Search in Google Scholar

Lee S, Russo DC, Reiner AP, et al. Molecular defects underlying the Kell null phenotype. J Biol Chem 2001; 20;276:27281-9.10.1074/jbc.M103433200Search in Google Scholar

Lee S, Russo D, Redman CM. The Kell blood group system: Kell and Xk membrane proteins. Semin Hematol 2000;37:113-21.10.1016/S0037-1963(00)90036-2Search in Google Scholar

Russo D, Redman C, Lee S. Association of XK and Kell blood group proteins. J Biol Chem 1998;273: 13950-6.10.1074/jbc.273.22.13950Search in Google Scholar

Danek A, Rubio JP, Rampoldi L, et al. McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol 2001;50:755-64.10.1002/ana.10035Search in Google Scholar

Redman CM, Russo D, Lee S. Kell, Kx and the McLeod syndrome. Baillieres Best Pract Res Clin Haematol 1999;12:621-35.10.1053/beha.1999.0045Search in Google Scholar

Russo D,Lee S, Redman C. Intracellular assembly of Kell and XK blood group proteins. Biochim Biophys Acta 1999;1461:10-8.10.1016/S0005-2736(99)00148-0Search in Google Scholar

Smith BL, Preston GM, Spring FA, et al. Human red cell aquaporin CHIP I. Molecular characterization of ABH and Colton blood group antigens. J Clin Invest 1994;94:1043-9.10.1172/JCI1174182951597521882Search in Google Scholar

King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nature Reviews Molecular Cell Biology 2004; 5:687-98.10.1038/nrm1469Search in Google Scholar

Roudier N, Ripoche P, Gane P, et al. AQP3 deficiency in humans and the molecular basis of a novel blood group system, GIL. J Biol Chem 2002;277:45854-9.10.1074/jbc.M208999200Search in Google Scholar

Roudier N, Bailly P, Gane P, et al. Erythroid expression and oligomeric state of the AQP3 protein. J Biol Chem 2002;277:7664-9.10.1074/jbc.M105411200Search in Google Scholar

Olives B, Neau P, Bailly P, et al. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem 1994; 269:31649-52.10.1016/S0021-9258(18)31744-7Search in Google Scholar

Edwards-Moulds J, Kasschau MR. Methods for the detection of Jk heterozygotes: interpretations and applications. Transfusion 1988;28:545-8.10.1046/j.1537-2995.1988.28689059028.xSearch in Google Scholar

Frohlich O,Macey RI, Edwards-Moulds J, et al. Urea transport deficiency in Jk(a–b–) erythrocytes. Am J Physiol 1991;260:C778-C783.10.1152/ajpcell.1991.260.4.C778Search in Google Scholar

Macey RI,Yousef LW. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am J Physiol 1988;254:C669-C674.10.1152/ajpcell.1988.254.5.C669Search in Google Scholar

Miller LH, Mason SJ, Clyde DF,et al. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 1976; 295:302-4.10.1056/NEJM197608052950602Search in Google Scholar

Horuk R, Chitnis CE, Darbonne WC, et al. A receptor for the malarial parasite Plasmodium vivax: the er ythrocyte chemokine receptor. Science 1993;261:1182-4.10.1126/science.7689250Search in Google Scholar

Chaudhuri A, Zbrzezna V, Polyakova J, et al. Expression of the Duffy antigen in K562 cells. Evidence that it is the human er ythrocyte chemokine receptor. J Biol Chem 1994;269: 7835-8.10.1016/S0021-9258(17)37123-5Search in Google Scholar

Neote K,Mak JY,Kolakowski LF Jr., et al. Functional and biochemical analysis of the cloned Duffy antigen: identity with the RBC chemokine receptor. Blood 1994;84:44-52.10.1182/blood.V84.1.44.44Search in Google Scholar

Yamada A, Kubo K, Takeshita T, et al. Molecular cloning of a glycosylphosphatidylinositol-anchored molecule CDw108. J Immunol 1999; 162:4094-100.10.4049/jimmunol.162.7.4094Search in Google Scholar

Kikutani H, Kumanogoh A. Semaphorins in interactions between T cells and antigenpresenting cells. Nat Rev Immunol 2003;3:159-67.10.1038/nri1003Search in Google Scholar

Holmes S, Downs AM, Fosberry A, et al. Sema7A is a potent monocyte stimulator. Scand J Immunol 2002;56:270-5.10.1046/j.1365-3083.2002.01129.xSearch in Google Scholar

Cichy J, Pure E.The liberation of CD44. J Cell Biol 2003;161:839-43.10.1083/jcb.200302098Search in Google Scholar

Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003;4:33-45.10.1038/nrm1004Search in Google Scholar

Telen MJ. RBC surface adhesion molecules: their possible roles in normal human physiology and disease. Semin Hematol 2000;37:130-42.10.1016/S0037-1963(00)90038-6Search in Google Scholar

Spring FA, Parsons SF. Erythroid cell adhesion molecules. Transfus Med Rev 2000;14:351-63.10.1053/tmrv.2000.16231Search in Google Scholar

Wagner FF, Poole J, Flegel WA. Scianna antigens including Rd are expressed by ERMAP. Blood 2003;101:752-7.10.1182/blood-2002-07-2064Search in Google Scholar

Barclay AN. Membrane proteins with immunoglobulin-like domains—a master superfamily of interaction molecules. Semin Immunol 2003; 15:215-23.10.1016/S1044-5323(03)00047-2Search in Google Scholar

Parsons SF, Spring FA, Chasis JA,et al. Erythroid cell adhesion molecules Lutheran and LW in health and disease. Baillieres Best Pract Res Clin Haematol 1999;12:729-45.10.1053/beha.1999.005010895261Search in Google Scholar

Udani M, Zen Q, Cottman M, et al. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin. J Clin Invest 1998;101:2550-8.10.1172/JCI12045088449616226Search in Google Scholar

Zen Q, Batchvarova M, Twyman CA, et al. B-CAM/LU expression and the role of B-CAM/LU activation in binding of low- and high-density red cells to laminin in sickle cell disease. Am J Hematol 2004;75:63-72.10.1002/ajh.1044214755370Search in Google Scholar

Lee G, Spring FA, Parsons SF, et al. Novel secreted isoform of adhesion molecule ICAM-4: potential regulator of membrane-associated ICAM-4 interactions. Blood 2003;101:1790-7.10.1182/blood-2002-08-252912406883Search in Google Scholar

Hermand P, Gane P, Huet M, et al. Red cell ICAM-4 is a novel ligand for platelet-activated alpha IIbbeta 3 integrin. J Biol Chem 2003;278:4892-8.10.1074/jbc.M21128220012477717Search in Google Scholar

Lee S, Lin M, Mele A, et al. Proteolytic processing of big endothelin-3 by the Kell blood group protein. Blood 1999;94:1440-50.10.1182/blood.V94.4.1440Search in Google Scholar

Vaughan JI, Manning M, Warwick RM, et al. Inhibition of erythroid progenitor cells by antiKell antibodies in fetal alloimmune anemia. N Engl J Med 1998;338:798-803.10.1056/NEJM1998031933812049504940Search in Google Scholar

Southcott MJ,Tanner MJ, Anstee DJ.The expression of human blood group antigens during erythropoiesis in a cell culture system. Blood 1999;93: 4425-35.10.1182/blood.V93.12.4425Search in Google Scholar

Bony V, Gane P, Bailly P, et al. Time-course expression of polypeptides carrying blood group antigens during human erythroid differentiation. Br J Haematol 1999;107:263-74.10.1046/j.1365-2141.1999.01721.x10583211Search in Google Scholar

Yazdanbakhsh K, Lee S,Yu Q, et al. Identification of a defect in the intracellular trafficking of a Kell blood group variant. Blood 1999;94:310-8.10.1182/blood.V94.1.310.413k12_310_318Search in Google Scholar

Spring FA, Gardner B, Anstee DJ. Evidence that the antigens of the Yt blood group system are located on human erythrocyte acetylcholinesterase. Blood 1992;80:2136-41.10.1182/blood.V80.8.2136.2136Search in Google Scholar

Rao N, Whitsett CF, Oxendine SM, et al. Human erythrocyte acetylcholinesterase bears the Yta blood group antigen and is reduced or absent in the Yt(a–b–) phenotype. Blood 1993;81:815-9.10.1182/blood.V81.3.815.815Search in Google Scholar

Rotundo RL. Expression and localization of acetylcholinesterase at the neuromuscular junction. J Neurocytol 2003;32:743-66.10.1023/B:NEUR.0000020621.58197.d4Search in Google Scholar

Oxendine SM, Telen MJ, Rao N, et al. The Cartwright negative phenotype: an acquired phenomenon associated with anti-Ytab-like antibody.Transfusion 32[8S], 19S. 1992.Search in Google Scholar

Reid ME. The Dombrock blood group system: a review. Transfusion 2003;43:107-14.10.1046/j.1537-2995.2003.00283.x12519438Search in Google Scholar

Rao N, Ferguson DJ, Lee SF, et al. Identification of human erythrocyte blood group antigens on the C3b/C4b receptor. J Immunol 1991;146:3502-7.10.4049/jimmunol.146.10.3502Search in Google Scholar

Moulds JM, Nickells MW, Moulds JJ, et al. The C3b/C4b receptor is recognized by the Knops, McCoy, Swain-Langley, and York blood group antisera. J Exp Med 1991;173:1159-63.10.1084/jem.173.5.115921188661708809Search in Google Scholar

Moulds JM, Zimmerman PA, Doumbo OK, et al. Molecular identification of Knops blood group polymorphisms found in long homologous region D of complement receptor 1. Blood 2001;97: 2879-85.10.1182/blood.V97.9.287911313284Search in Google Scholar

Krych-Goldberg M, Atkinson JP. Structure-function relationships of complement receptor type 1. Immunol Rev 2001;180:112-22.10.1034/j.1600-065X.2001.1800110.xSearch in Google Scholar

Cockburn IA, Mackinnon MJ, O’Donnell A, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci U S A 2004;101:272-7.10.1073/pnas.030530610131417514694201Search in Google Scholar

Spring FA, Judson PA, Daniels GL, et al. A human cell-surface glycoprotein that carries Cromer-related blood group antigens on erythrocytes and is also expressed on leucocytes and platelets. Immunology 1987;62:307-13.Search in Google Scholar

Telen MJ, Hall SE, Green AM, et al. Identification of human erythrocyte blood group antigens on decay-accelerating factor (DAF) and an erythrocyte phenotype negative for DAF. J Exp Med 1988;167:1993-8.10.1084/jem.167.6.199321896702455016Search in Google Scholar

Holmes CH, Simpson KL, Wainwright SD, et al. Preferential expression of the complement regulatory protein decay accelerating factor at the fetomaternal interface during human pregnancy. J Immunol 1990;144:3099-105.10.4049/jimmunol.144.8.3099Search in Google Scholar

Nowicki B, Hart A, Coyne KE, et al. Short consensus repeat-3 domain of recombinant decayaccelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cellcell interaction. J Exp Med 1993;178:2115-21.10.1084/jem.178.6.211521912837504058Search in Google Scholar

Yu CY, Belt KT, Giles CM, et al. Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J 1986;5:2873-81.10.1002/j.1460-2075.1986.tb04582.x11672372431902Search in Google Scholar

Blanchong CA, Chung EK, Rupert KL, et al. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol 2001;1:365-92.10.1016/S1567-5769(01)00019-4Search in Google Scholar

Tippett P, Storry JR,Walker PS,et al.Glycophorin A-deficient red cells may have a weak expression of C4-bound Ch and Rg antigens. Immunohematology 1996;12:4-7.10.21307/immunohematology-2019-737Search in Google Scholar

Colin Y. Gerbich blood groups and minor glycophorins of human erythrocytes.Transfus Clin Biol 1995;2:259-68.10.1016/S1246-7820(05)80092-8Search in Google Scholar

Glinsky GV, Ivanova AB, Welsh J, et al. The role of blood group antigens in malignant progression, apoptosis resistance, and metastatic behavior. Transfus Med Rev 2000;14:326-50.10.1053/tmrv.2000.1623011055077Search in Google Scholar

Issitt PD, Anstee DJ. Applied blood group serology. 4th ed. Miami, FL, USA: Montgomery Scientific Publications, 1998.Search in Google Scholar

Roitt I, Brostoff J, Male D. Immunology. 6th ed. London: Mosby, 2001.Search in Google Scholar

Garratty G. Blood group antigens as tumor markers, parasitic/bacterial/viral receptors, and their association with immunologically important proteins. Immunol Invest 1995;24:213-32.10.3109/088201395090627747713584Search in Google Scholar

eISSN:
1930-3955
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Laboratory Medicine