Requiere autenticación

Polylactosamines, there’s more than meets the “Ii”: a review of the I system

   | 14 mar 2020

Cite

Wiener AS, Unger LJ, Cohen L, Feldman J. Type-specific cold auto-antibodies as a cause of acquired hemolytic anemia and hemolytic transfusion reactions: biologic test with bovine red cells. Ann Internal Med 1956;44:221–40.10.7326/0003-4819-44-2-221Search in Google Scholar

Marsh WL. Anti-i: a cold antibody defining the Ii relationship in human red cells. Br J Haematol 1961;7:200–9.10.1111/j.1365-2141.1961.tb00329.xSearch in Google Scholar

Grundbacher FJ. Changes in the human A antigen of erythrocytes with the individual’s age. Nature 1964;204:192–4.10.1038/204192a0Search in Google Scholar

Doinel C, Ropars C, Salmon C. Quantitative and thermodynamic measurements on I and i antigens of human red cells. Immunology 1976;30:289–97.Search in Google Scholar

Oleson H. Thermodynamics of the cold agglutinin reaction. Scand J Clin Lab Invest 1966; 18:1–15.10.3109/00365516609065601Search in Google Scholar

Vigorito E, Robles A, Balter H, Nappa A, Goñi F. [125I]IgM (KAU) human monoclonal cold agglutinin: labelling and studies on its biological activity. Appl Radiat Isot 1995;46:975–9.10.1016/0969-8043(95)00208-USearch in Google Scholar

Inaba N, Hiruma T, Togayachi A, et al. A novel I-branching β-1,6-N-acetylglucosaminyltransferase involved in human blood group I antigen expression. Blood 2003;101:2870–6.10.1182/blood-2002-09-283812468428Search in Google Scholar

Yu L-C, Twu Y-C, Chou M-L, et al. The molecular genetics of the human I locus and molecular background explain the partial association of the adult i phenotype with congenital cataracts. Blood 2003;101:2081–8.10.1182/blood-2002-09-269312424189Search in Google Scholar

Lin M, Hou M-J, Yu L-C. A novel IGnT allele responsible for the adult i phenotype. Transfusion 2006;46: 1982–7.10.1111/j.1537-2995.2006.01006.x17076854Search in Google Scholar

Pras E, Raz J, Yahalom V, et al. A nonsense mutation in the glucosaminyl (N-acetyl) transferase 2 gene (GCNT2): association with autosomal recessive congenital cataracts. Invest Ophthalmol Vis Sci 2004; 45:1940–5.10.1167/iovs.03-111715161861Search in Google Scholar

Tippett P, Noades J, Sanger R, Race RR. Further studies of the I antigen and antibody. Vox Sang 1960; 5:107–121.10.1111/j.1423-0410.1960.tb04668.xSearch in Google Scholar

Ogata H, Okubo Y, Akabane T. Phenotype i associated with congenital cataract in Japanese. Transfusion 1979;19:166–8.10.1046/j.1537-2995.1979.19279160286.xSearch in Google Scholar

Marsh WL, DePalma H. Association between the Ii blood group and congenital cataract. Transfusion 1982;22:337–8.10.1046/j.1537-2995.1982.22482251224.xSearch in Google Scholar

McDonald EB, Douglas R, Harden PA. A Caucasian family with the i phenotype and congenital cataracts. Vox Sang 1983;44:322–5.10.1111/j.1423-0410.1983.tb04490.xSearch in Google Scholar

Jenkins WJ, Marsh WL, Noades J, Tippett P, Sanger R, Race RR. The I antigen and antibody. Vox Sang 1960;5:97–106.10.1111/j.1423-0410.1960.tb04667.xSearch in Google Scholar

Navonet JM, Muller JY, Blanchard D. Expression of blood group I antigen and fetal hemoglobin in paroxysmal nocturnal hemoglobinuria. Transfusion 1997;37:291–7.10.1046/j.1537-2995.1997.37397240211.xSearch in Google Scholar

Kolins J, Allgood JW, Burghardt DC, Klein HG, McGinniss MH. Modifications of B, I, i, and Lewis b antigens in a patient with DiGuglielmo’s erythroleukemia. Transfusion 1980;20:574–7.10.1046/j.1537-2995.1980.20581034514.xSearch in Google Scholar

Mollison PL, Engelfriet CP, Contreras M, eds. Blood transfusion in clinical medicine. 10th ed. Oxford, England: Blackwell Science, 1997.Search in Google Scholar

Denecke J, Marquardt T. Congenital dyserythropoietic anemia type II (CDAII/HEMPAS): where are we now? Biochim Biophys Acta 2009;1792:915–20.10.1016/j.bbadis.2008.12.005Search in Google Scholar

Zdebska E, Golaszewska E, Fabijańska-Mitek J, et al. Glycoconjugate abnormalities in patients with congenital dyserythropoietic anaemia type I, II and III. Br J Haematol 2001;114:907–13.10.1046/j.1365-2141.2001.03046.xSearch in Google Scholar

Schwarz K, Iolascon A, Verissimo F, et al. Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet 2009;41:936–40.10.1038/ng.405Search in Google Scholar

Zdebska E, Krauze R, Kościelak J. Structure and blood-group I activity of poly(glycosyl)-ceramides. Carbohydr Res 1983;120:113–20.10.1016/0008-6215(83)88011-2Search in Google Scholar

Feizi T. The blood group Ii system: a carbohydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man. Immunol Commun 1981;10:127–56.10.3109/08820138109050693Search in Google Scholar

Feizi T, Childs RA, Watanabe K, Hakomori S-I. Three types of blood group I specificity among monoclonal anti-I autoantibodies revealed by analogues of a branched erythrocyte glycolipid. J Exp Med 1979;149: 975–80.10.1084/jem.149.4.975Search in Google Scholar

Fukuda M, Dell A, Oates JE, Fukuda MN. Structure of a branched lactosaminoglycan, the carbohydrate moiety of Band 3 isolated from adult human erythrocytes. J Biol Chem 1984;259:8260–73.10.1016/S0021-9258(17)39722-3Search in Google Scholar

Roelcke D. Sialic acid-dependent red blood cell antigens. In: Garratty G, ed. Immunobiology of transfusion medicine. New York, NY: Marcel-Dekker, 1994:69–95.Search in Google Scholar

Renkonen O. Enzymatic in vitro synthesis of I-branches of mammalian polylactosamines: generation of scaffolds for multiple selectin-binding saccharide determinants. Cell Mol Life Sci 2000;57:1423–39.10.1007/PL00000627Search in Google Scholar

Wilczyńska Z, Miller-Podraza H, Kościelak J. The contribution of different glycoconjugates to the total ABH blood group activity of human erythrocytes. FEBS Lett 1980;112:277–9.10.1016/0014-5793(80)80197-9Search in Google Scholar

Jackson CL. Mechanisms of transport through the Golgi complex. J Cell Sci 2009;122:443–52.10.1242/jcs.03258119193869Search in Google Scholar

Skrincosky D, Kain R, El-Battari A, Exner M, Kerjaschki D, Fukuda M. Altered Golgi localization of core 2 beta-1,6-N -acetylglucosaminyltransferase leads to decreased synthesis of branched O -glycans. J Biol Chem 1997;272:22695–702.10.1074/jbc.272.36.226959278427Search in Google Scholar

Lee PL, Kohler JJ, Pfeffer SR. Association of β-1,3-N -acetylglucosaminyltransferase 1 and β-1,4-galactosyltransferase 1, trans- Golgi enzymes involved in coupled poly-N -acetyllactosamine synthesis. Glycobiology 2009;19:655–64.10.1093/glycob/cwp035268260919261593Search in Google Scholar

Seko A, Yamashita K. Activation of β1,3-N - acetylglucosaminyltransferase-2 (β3Gn-T2) by β3Tn-T8: possible involvement of β3GnT8 in increasing poly-N -acetyllactosamine chains in differentiated HL-60 cells. J Biol Chem 2008;283:33094–100.10.1074/jbc.M806933200266224818826941Search in Google Scholar

Zhou D, Dinter A, Gutiérrez Gallego R, et al. A β-1,3-N -acetylglucosaminyltransferase with poly-N - acetyllactosamine synthase activity is structurally related to β-1,3-galactosyltransferases. Proc Natl Acad Sci U S A 1999;96:406–11.10.1073/pnas.96.2.406151499892646Search in Google Scholar

Shiraishi N, Natsume A, Togayachi A, et al. Identification and characterization of three novel β1,3-N -acetylglucosaminyltransferases structurally related to the β1,3-galactosyltransferase family. J Biol Chem 2001;276:3498–507.10.1074/jbc.M004800200Search in Google Scholar

Henion TR, Zhou D, Wolfer DP, Jungalwala FB, Hennet T. Cloning of a mouse β1,3 N -acetylglucosaminyltransferase GlcNAc(β1,3) Gal(β1,4)Glc-ceramide synthase gene encoding the key regulator of lacto-series glycolipid biosynthesis. J Biol Chem 2001;276:30261–9.10.1074/jbc.M102979200Search in Google Scholar

Togayachi A, Akashima T, Ookubo R, et al. Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide β1,3-N -acetylglucosaminyltransferase (β3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem 2001;276:22032–40.10.1074/jbc.M011369200Search in Google Scholar

Stults CLM, Macher BA. β1–3-N -acetylglucosaminyltransferase in human leukocytes: properties and role in regulating neolacto glycosphingolipid biosynthesis. Arch Biochem Biophys 1993;303:125–33.10.1006/abbi.1993.1263Search in Google Scholar

Bierhuizen MFA, Mattei M-G, Fukuda M. Expression of the developmental I antigen by a cloned human cDNA encoding a member of a β-1,6-N - acetylglucosaminyltransferase family. Genes Dev 1993;7:468–78.10.1101/gad.7.3.468Search in Google Scholar

Merkle RK, Cummings RD. Relationship of the terminal sequences to the length of poly-N - acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Immobilized tomato lectin interacts with high affinity with glycopeptides containing long poly-N -acetyllactosamine chains. J Biol Chem 1987;262:8179–89.10.1016/S0021-9258(18)47546-1Search in Google Scholar

Sasaki K, Kurata-Miura K, Ujita M, et al. Expression cloning of cDNA encoding a human β-1,3-N - acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc Natl Acad Sci U S A 1997;94:14294–9.10.1073/pnas.94.26.14294249489405606Search in Google Scholar

Gromova I, Gromov P, Celis JE. A novel member of the glycosyltransferase family, β3 Gn-T2, highly downregulated in invasive human bladder transitional cell carcinomas. Mol Carcinog 2001;32:61–72.10.1002/mc.106511746818Search in Google Scholar

Henion TR, Raitcheva D, Grosholz R, et al. β1,3-N -acetylglucosaminyltransferase 1 glycosylation is required for axon pathfinding by olfactory sensory neurons. J Neurosci 2005;25:1894–903.10.1523/JNEUROSCI.4654-04.2005672605915728829Search in Google Scholar

Togayachi A, Kozono Y, Ishida H, et al. Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc Natl Acad Sci U S A 2007;104:15829–34.10.1073/pnas.0707426104200043717890318Search in Google Scholar

Ishida H, Togayachi A, Sakai T, et al. A novel β1,3-N -acetylglucosaminyltransferase (β3Gn-T8), which synthesizes poly-N -acetyllactosamine, is dramatically upregulated in colon cancer. FEBS Lett 2005;579: 71–8.10.1016/j.febslet.2004.11.037Search in Google Scholar

Bao X, Kobayashi M, Hatakeyama S, et al. Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct β3-N -acetylglucosaminyltransferase. Proc Natl Acad Sci USA 2009; 106:12109–14.10.1073/pnas.0904515106Search in Google Scholar

Symington FW, Hedges DL, Hakomori S-I. Glycolipid antigens of human polymorphonuclear neutrophils and the inducible HL-60 myeloid leukemia line. J Immunol 1985;134:2498–506.Search in Google Scholar

Cooling LLW, Zhang DS, Naides SJ, Koerner TAW. Glycosphingolipid expression in acute nonlymphocytic leukemia: common expression of shiga toxin and parvovirus B19 receptors on early myeloblasts. Blood 2003;101:711–21.10.1182/blood-2002-03-0718Search in Google Scholar

Cooling LW, De-Sheng Z, Koerner TAW. Lewis X and sialyl Lewis X glycosphingolipids. Trends Glycosci Glycotechnol 1997;9:191–209.10.4052/tigg.9.191Search in Google Scholar

Iwai T, Inaba N, Naundorf A, et al. Molecular cloning and characterization of a novel UDP-GlcNAc: GalNAc-peptide β1,3-N -acetylglucosaminyltransferase (β3Gn-T6), an enzyme synthesizing the core 3 structure of O -glycans. J Biol Chem 2002;277:12802–9.10.1074/jbc.M112457200Search in Google Scholar

Kataoka K, Huh N. A novel β1,3-N -acetylglucosaminyltransferase involved in invasion of cancer cells as assayed in vitro. Biochem Biophys Res Commun 2002;294:843–8.10.1016/S0006-291X(02)00553-3Search in Google Scholar

Yeh J-C, Hiraoka N, Petryniak B, et al. Novel sulfated lymphocyte homing receptors and their control by a Core1 extension β1,3-N -acetylglucosaminyltransferase. Cell 2001;105:957–69.10.1016/S0092-8674(01)00394-4Search in Google Scholar

Seko A, Yamashita K. β1,3-N -Acetylglucosaminyltransferase-7 (β3GnT7) acts efficiently on keratan sulfate-related glycans. FEBS Lett 2004;556:216–20.10.1016/S0014-5793(03)01440-6Search in Google Scholar

Twu Y-C, Chen C-P, Hsieh C-Y, et al. I branching formation in erythroid differentiation is regulated by transcription factor C/EBPα. Blood 2007;110:4526–34.10.1182/blood-2007-01-06780117855628Search in Google Scholar

Geest CR, Buitenhuis M, Laarhoven AG, et al. p38 MAP kinase inhibits neutrophil development through phosphorylation of C/EBPα on serine 21. Stem Cells 2009;27:2271–82.10.1002/stem.15219544470Search in Google Scholar

Bierhuizen MFA, Fukuda M. Expression cloning of a cDNA encoding UDP-GlcNAc:Galβ1-3-GalNAc-R (GlcNAc to GalNAc) β1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc Natl Acad Sci U S A 1992;89: 9326–30.10.1073/pnas.89.19.9326Search in Google Scholar

Yeh J-C, Ong E, Fukuda M. Molecular cloning and expression of a novel β-1,6-N -acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J Biol Chem 1999;274;3215–21.10.1074/jbc.274.5.3215Search in Google Scholar

Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology 2006;16:29R–37R.10.1093/glycob/cwj016Search in Google Scholar

Pak JE, Arnoux P, Zhou S, et al. X-ray crystal structure of leukocyte type core 2 β1,6-N -acetylglucosaminyltransferase: evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J Biol Chem 2006;281:26693–701.10.1074/jbc.M603534200Search in Google Scholar

Cabrera PV, Amano M, Mitoma J, et al. Haploinsufficiency of C2GnT-1 glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 2006;108:2399–406.10.1182/blood-2006-04-018556Search in Google Scholar

Bengtson P, Larson C, Lundblad A, Larson G, Påhlsson P. Identification of a missense mutation (G329A;Arg110➡Gln) in the human FUT7 gene. J Biol Chem 2001;276:31575–82.10.1074/jbc.M104165200Search in Google Scholar

Adinolfi M. Anti-I antibody in normal human newborn infants. Immunology 1965;9:43–52.Search in Google Scholar

Dube VE, Zuckerman L, Philipsborn HF Jr. Variation of cold agglutinin levels. Vox Sang 1978;34:71–6.10.1111/j.1423-0410.1978.tb03725.xSearch in Google Scholar

Doinel C. I antigenicity of the Bombay red cells [in French]. Rev Fr Transfus Immunohematol 1976;19: 185–91.10.1016/S0338-4535(76)80097-9Search in Google Scholar

Gilboa-Garber N, Sudakevitz D, Levene C. A comparison of the Aplysia lectin anti-I specificity with human anti-I and several other I-detecting lectins. Transfusion 1999;39:1060–4.10.1046/j.1537-2995.1999.39101060.xSearch in Google Scholar

Stults CLM, Sweeley CC, Macher BA. Glycosphingolipids: structure, biological source, and properties. Methods Enzymol 1989;179:167–214.10.1016/0076-6879(89)79122-9Search in Google Scholar

Gardas A. Studies on the I-blood-group-active sites on macro-glycolipids from human erythrocytes. Eur J Biochem 1976;68:185–91.10.1111/j.1432-1033.1976.tb10777.xSearch in Google Scholar

Kannagi R, Roelcke D, Peterson KA, Okada Y, Levery SB, Hakomori S-I. Characterization of an epitope (determinant) structure in a developmentally regulated glycolipid antigen defined by a cold agglutinin Fl, recognition of an α-sialosyl and α-L-fucosyl groups in a branched structure. Carbohydr Res 1983;120:143–57.10.1016/0008-6215(83)88013-6Search in Google Scholar

Nagatsuka Y, Watarai S, Yasuda T, Higashi H, Yamagata T, Ono Y. Production of human MAbs to i blood group by EBV-induced transformation: possible presence of a new glycolipid in cord red cell membranes and human hematopoietic cell lines. Immunol Lett 1995;46: 93–100.10.1016/0165-2478(95)00028-4Search in Google Scholar

Nagatsuka Y, Yamaki M, Watarai S, et al. The Epstein-Barr virus (EBV) alters the B cell glycolipid which is recognized by the human monoclonal antibody to i-blood group antigen. Virus Res 1996;43:57–68.10.1016/0168-1702(96)01321-4Search in Google Scholar

Chapman CJ, Spellerberg MB, Smith GA, Carter SJ, Hamblin TJ, Stevenson FK. Autoanti-red cell antibodies synthesized by patients with infectious mononucleosis utilize the VH4–21 gene segment. J Immunol 1993;151:1051–61.Search in Google Scholar

Riboldi P, Gaidano G, Schettino EW, et al. Two acquired immunodeficiency syndrome-associated Burkitt’s lymphomas produce specific anti-i IgM cold agglutinins using somatically mutated VH4–21 segments. Blood 1994;83:2952–61.10.1182/blood.V83.10.2952.2952Search in Google Scholar

Roelcke D, Kreft H, Hack H, Stevenson FK. Anti-j: human cold agglutinins recognizing linear (i) and branched (I) type 2 chains. Vox Sang 1994;67:216–21.10.1111/j.1423-0410.1994.tb01663.xSearch in Google Scholar

Dube VE, Kallio P, Tanaka M. Specificity of the monoclonal anti-I antibody (Hy). Mol Immunol 1986; 23:217–20.10.1016/0161-5890(86)90045-3Search in Google Scholar

Roelcke D, Kreft H, Northoff H, Gallasch E. Sia-β1 and I antigens recognized by Mycoplasma pneumoniae-induced human cold agglutinins. Transfusion 1991;31: 627–30.10.1046/j.1537-2995.1991.31791368339.x1716384Search in Google Scholar

Zilow G, Haffner D, Roelcke D. CMV-induced antiSia-β1 cold agglutinin in an immunocompromised patient. Beitr Infusionsther Transfusionsmed 1997;34: 180–4.Search in Google Scholar

Loomes LM, Uemura K-I, Feizi T. Interaction of Mycoplasma pneumoniae with erythrocyte glycolipids of the I and i antigen types. Infect Immun 1985;47: 15–20.10.1128/iai.47.1.15-20.19852614503917425Search in Google Scholar

Loveless RW, Feizi T. Sialo-oligosaccharide receptors for Mycoplasma pneumoniae and related oligosaccharides of poly-N -acetyllactosamine series are polarized at the cilia and apical-microvillar domains of the ciliated cells in the human bronchial epithelium. Infect Immun 1989;57:1285–9.10.1128/iai.57.4.1285-1289.19893132632494113Search in Google Scholar

Feizi T, Loveless RW. Carbohydrate recognition by Mycoplasma pneumoniae and pathologic consequences. Am J Respir Crit Care Med 1996;154 (Suppl):S133–6.10.1164/ajrccm/154.4_Pt_2.S133Search in Google Scholar

Li Y, Spellerberg MB, Stevenson FK, Capra JD, Potter KN. The I binding specificity of human VH4-34 (VH4-21) encoded antibodies is determined by both VH framework region 1 and complementarity determining region 3. J Mol Biol 1996;256:577–89.10.1006/jmbi.1996.0110Search in Google Scholar

Stevenson FK, Spellerberg MB, Chapman CJ, Hamblin TJ. Differential usage of an autoantibody-associated VH gene, VH4-21, by human B-cell tumors. Leuk Lymphoma 1995;16:379–84.10.3109/10428199509054423Search in Google Scholar

Ishida F, Saito H, Kitano K, Kiyosawa K. Cold agglutinin disease by autoanti-i blood type antibody associated with B cell chronic lymphocytic leukemia. Int J Hematol 1998;67:69–73.10.1016/S0925-5710(97)00084-4Search in Google Scholar

Silberstein LE, Jefferies LC, Goldman J, et al. Variable region gene analysis of pathologic human autoantibodies to the related I and i red blood cell antigens. Blood 1991;78:2372–86.10.1182/blood.V78.9.2372.2372Search in Google Scholar

Cauerhff A, Braden BC, Carvalho JG, et al. Three-dimensional structure of the Fab from a human IgM cold agglutinin. J Immunol 2000;165:6422–8.10.4049/jimmunol.165.11.6422Search in Google Scholar

Leo A, Kreft H, Hack H, Kempf T, Roelcke D. Restriction in the repertoire of the immunoglobulin light chain subgroup in pathological cold agglutinins with anti-Pr specificity. Vox Sang 2004;86:141–7.10.1111/j.0042-9007.2004.00401.xSearch in Google Scholar

Foreman AL, Van de Water J, Gougeon M-L, Gershwin ME. B cells in autoimmune diseases: insights from analyses of immunoglobulin variable (Ig V) gene usage. Autoimmun Rev 2007;6:387–401.10.1016/j.autrev.2006.12.005Search in Google Scholar

Jefferies LC, Carchidi CM, Silberstein LE. Immunoglobulin gene use by naturally occurring cold agglutinins. Ann N Y Acad Sci 1995;764:433–5.10.1111/j.1749-6632.1995.tb55859.xSearch in Google Scholar

Havouis S, Dumas G, Avé P, et al. Negative regulation of autoreactive B cells in transgenic mice expressing a human pathogenic cold agglutinin. Eur J Immunol 2000;30:2290–9.10.1002/1521-4141(2000)30:8<2290::AID-IMMU2290>3.0.CO;2-RSearch in Google Scholar

Havouis S, Dumas G, Chambaud I, et al. Transgenic B lymphocytes expressing a human cold agglutinin escape tolerance following experimental infection of mice by Mycoplasma pulmonis. Eur J Immunol 2002; 32:1147–56.10.1002/1521-4141(200204)32:4<1147::AID-IMMU1147>3.0.CO;2-OSearch in Google Scholar

Mandrell RE, Griffiss JM, Macher BA. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J Exp Med 1988;168:107–26.10.1084/jem.168.1.107Search in Google Scholar

Thorpe SJ, Boult CE, Stevenson FK, et al. Cold agglutinin activity is common among human monoclonal antibodies using the V4-34 heavy chain variable gene segment. Transfusion 1997;37:1111–16.10.1046/j.1537-2995.1997.37111298088038.xSearch in Google Scholar

Thorpe SJ, Turner CE, Stevenson FK, et al. Human monoclonal antibodies encoded by the V4-34 gene segment show cold agglutinin activity and variable multireactivity which correlates with the predicted charge of the heavy-chain variable region. Immunology 1998;93:129–36.10.1046/j.1365-2567.1998.00406.xSearch in Google Scholar

Terness P, Kirschfink M, Navolan D, et al. Striking inverse correlation between IgG anti-F(ab′)2and autoantibody production in patients with cold agglutination. Blood 1995;85:548–51.10.1182/blood.V85.2.548.548Search in Google Scholar

Terness P, Kirschfink M, Navolan D, et al. Inverse correlation between IgG-antihinge region and antierythrocyte autoantibody in chronic benign and malignant cold agglutination. J Clin Immunol 1997; 17:220–7.10.1023/A:1027306511414Search in Google Scholar

Young WW Jr, Portoukalian J, Hakomori S-I. Two monoclonal anticarbohydrate antibodies directed to glycosphingolipids with a lacto-N -glycosyl type II chain. J Biol Chem 1981;256:10967–72.10.1016/S0021-9258(19)68541-8Search in Google Scholar

Fenderson BA, Nichols EJ, Clausen H, Hakomori S-I. A monoclonal antibody defining a binary N -acetyllactosaminyl structure in lactoisooctaosylceramide (IV6 Galβ1➡4GlcNAcnLc6): a useful probe for determining differential glycosylation patterns between normal and transformed human fibroblasts. Mol Immunol 1986;23:747–54.10.1016/0161-5890(86)90086-6Search in Google Scholar

Myoga A, Taki T, Arai K, et al. Detection of patients with cancer by monoclonal antibody directed to lactoneotetraosylceramide (paragloboside). Cancer Res 1988;48:1512–6.Search in Google Scholar

Fenderson BA, Hahnel AC, Eddy EM. Immunohistochemical localization of two monoclonal antibody-defined carbohydrate antigens during early murine embryogenesis. Dev Biol 1983;100:318–27.10.1016/0012-1606(83)90226-9Search in Google Scholar

Cooling LLW, Zhang DS, Koerner TAW. Human platelets express gangliosides with LKE activity and ABH blood group activity. Transfusion 2001;41: 504–16.10.1046/j.1537-2995.2001.41040504.xSearch in Google Scholar

Hirohashi S, Clausen H, Nudelman E, Inoue H, Shimosato Y, Hakomori S. A human monoclonal antibody directed to blood group i antigen: heterohybridoma between human lymphocytes from regional lymph nodes of a lung cancer patient and mouse myeloma. J Immunol 1986;136:4163–8.Search in Google Scholar

Miyake M, Kohno N, Nudelman ED, Hakomori S-I. Human IgG3monoclonal antibody directed to an unbranched repeating type 2 chain (Galβ1➡4GlcNAc β1➡3Galβ1➡4GlcNAcβ1➡3Galβ1➡R) which is highly expressed in colonic and hepatocellular carcinoma. Cancer Res 1989;49:5689–95.Search in Google Scholar

Gooi HC, Uemura K-I, Edwards PAW, Foster CS, Pickering N, Feizi T. Two mouse hybridoma antibodies against milk-fat globules recognise the I(Ma) antigenic determinant β-D-Galp -(1➡4)-β-D-Glcp NAc-(1➡6). Carbohydr Res 1983;120:293–302.10.1016/0008-6215(83)88023-9Search in Google Scholar

Foster CS, Neville AM. Monoclonal antibodies to the human mammary gland: monoclonal antibody LiCRLON-M18 identifies impaired expression and excess sialylation of the I(Ma) cell-surface antigen by primary breast carcinoma cells. Hum Pathol 1984;15:502–13.10.1016/S0046-8177(84)80003-9Search in Google Scholar

Symington FW, Fenderson BA, Hakomori S-I. Fine specificity of a monoclonal anti-testicular cell antibody for glycolipids with terminal N -acetyl-D-glucosamine structure. Mol Immunol 1984;21:877–82.10.1016/0161-5890(84)90142-1Search in Google Scholar

Holmes EH, Greene TG. Isolation and fine-structure characterization of four monoclonal antibodies reactive with glycoconjugates containing terminal GlcNAc residues: application to aspects of lacto-series tumor antigen biosynthesis. Arch Biochem Biophys 1991;288:87–96.10.1016/0003-9861(91)90168-ISearch in Google Scholar

Hu J, Stults CLM, Holmes EH, Macher BA. Structural characterization of intermediates in the biosynthetic pathway of neolacto glycosphingolipids: differential expression in human leukaemia cells. Glycobiology 1994;4:251–7.10.1093/glycob/4.3.252Search in Google Scholar

Iglesias JL, Lis H, Sharon N. Purification and properties of a D-galactose/N-acetyl-D-galactosamine-specific lectin from Erythrina cristagalli. Eur J Biochem 1982; 123:247–52.10.1111/j.1432-1033.1982.tb19760.xSearch in Google Scholar

Teneberg S, Angström J, Jovall P-A, Karlsson K-A. Characterization of binding of Galβ4GlcNAc-specific lectins from Erythrina cristagalli and Erythrina corallodendron to glycosphingolipids. Detection, isolation, and characterization of a novel glycosphingolipid of bovine buttermilk. J Biol Chem 1994;269:8554–63.10.1016/S0021-9258(17)37231-9Search in Google Scholar

Moreno E, Teneberg S, Adar R, Sharon N, Karlsson K-A, Angström J. Redefinition of the carbohydrate specificity of Erythrina corallodendron lectin based on solid-phase binding assays and molecular modeling of native and recombinant forms obtained by site-directed mutagenesis. Biochemistry 1997;36:4429–37.10.1021/bi962231hSearch in Google Scholar

Elgavish S, Shaanan B. Structures of the Erythrina corallodendron lectin and of its complexes with mono-and disaccharides. J Mol Biol 1998;277:917–32.10.1006/jmbi.1998.1664Search in Google Scholar

Gilboa-Garber N, Susswein AJ, Mizrahi L, Avichezer D. Purification and characterization of the gonad lectin of Aplysia depilans. FEBS Lett 1985;181:267–70.10.1016/0014-5793(85)80273-8Search in Google Scholar

Knibbs RN, Goldstein IJ, Ratcliffe RM, Shibuya N. Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis: comparison with other sialic acid-specific lectins. J Biol Chem 1991;266:83–8.10.1016/S0021-9258(18)52405-4Search in Google Scholar

Johansson L, Miller-Podraza H. Analysis of 3- and 6-linked sialic acids in mixtures of gangliosides using blotting to polyvinylidene difluoride membranes, binding assays, and various mass spectrometry techniques with application to recognition by Helicobacter pylori. Anal Biochem 1998;265:260–8.10.1006/abio.1998.2920Search in Google Scholar

Cooling LL, Hwang D, Gu Y. The LKE-negative and LKE-weak RBC phenotypes do not reflect decreased RBC sialylation [abstract]. Transfusion 2003;43:26.Search in Google Scholar

Müthing J, Meisen I, Bulau P, et al. Mistletoe lectin I is a sialic acid-specific lectin with strict preference to gangliosides and glycoproteins with terminal Neu5Acα2-6Galβ1-4GlcNAc residues. Biochemistry 2004;43:2996–3007.10.1021/bi0301892Search in Google Scholar

Mo H, Winter HC, Goldstein IJ. Purification and characterization of a Neu5Acα2-6Galβ1-4Glc/GlcNAc-specific lectin from the fruiting body of the polypore mushroom Polyporus squamosus. J Biol Chem 2000;275:10623–9.10.1074/jbc.275.14.10623Search in Google Scholar

Toma V, Zuber C, Winter HC, Goldstein IJ, Roth J. Application of a lectin from the mushroom Polysporus squamosus for the histochemical detection of the NeuAcα2,6Galβ1,4Glc/GlcNAc sequence of N -linked oligosaccharides: a comparison with the Sambucus nigra lectin. Histochem Cell Biol 2001;116:183–93.10.1007/s004180100304Search in Google Scholar

Tateno H, Winter HC, Goldstein IJ. Cloning, expression in Escherichia coli and characterization of the recombinant Neu5Acα2,6Galβ1,4GlcNAc-specific high-affinity lectin and its mutants from the mushroom Polyporus squamosus. Biochem J 2004;382:667–75.10.1042/BJ20040391Search in Google Scholar

Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence. J Biol Chem 1987;262:1596–601.10.1016/S0021-9258(19)75677-4Search in Google Scholar

Yamashita K, Umetsu K, Suzuki T, Ohkura T. Purification and characterization of a Neu5Acα2➡6Galβ1➡4GlcNAc and HSO3–➡6Galβ1➡4GlcNAc specific lectin in tuberous roots of Trichosanthes japonica. Biochemistry 1992;31:11647–50.10.1021/bi00161a052Search in Google Scholar

Fukuda M, Dell A, Fukuda MN. Structure of fetal lactosaminoglycan. The carbohydrate moiety of Band 3 isolated from human umbilical cord erythrocytes. J Biol Chem 1984;259:4782–91.10.1016/S0021-9258(17)42915-2Search in Google Scholar

Bless E, Raitcheva D, Henion TR, Tobet S, Schwarting GA. Lactosamine modulates the rate of migration of GnRH neurons during mouse development. Eur J Neurosci 2006;24:654–60.10.1111/j.1460-9568.2006.04955.x16930397Search in Google Scholar

Biellmann F, Henion TR, Bürki K, Hennet T. Impaired sexual behavior in male mice deficient for the β1-3 N -acetylglucosaminyltransferase-I gene. Mol Reprod Dev 2008;75:699–706.10.1002/mrd.20828Search in Google Scholar

Chen GY, Muramatsu H, Kondo M, et al. Abnormalities caused by carbohydrate alterations in Iβ6-N - acetylglucosaminyltransferase-deficient mice. Mol Cell Biol 2005;25:7828–38.10.1128/MCB.25.17.7828-7838.2005Search in Google Scholar

Muramatsu H, Kusano T, Sato M, Oda Y, Kobori K, Muramatsu T. Embryonic stem cells deficient in I β1,6-N -acetylglucosaminyltransferase exhibit reduced expression of embyroglycan and the loss of a Lewis X antigen, 4C9. Glycobiology 2008;18:242–9.10.1093/glycob/cwm138Search in Google Scholar

Barriocanal JG, Bonifacino JS, Yuan L, Sandoval IV. Biosynthesis, glycosylation, movement through the Golgi system, and transport to lysosomes by an N -linked carbohydrate-independent mechanism of three lysosomal integral membrane proteins. J Biol Chem 1986;261:16755–63.10.1016/S0021-9258(18)66630-XSearch in Google Scholar

Ogiso M, Ohta M, Okinaga T, et al. Glycosphingolipids in cultured lens epithelial cells from dog and rhesus monkey. Glycobiology 1994;4:375–82.10.1093/glycob/4.3.375Search in Google Scholar

Ogiso M, Komoto M, Okinaga T, Koyota S, Hoshi M. Age-related changes in ganglioside composition in human lens. Exp Eye Res 1995;60:317–23.10.1016/S0014-4835(05)80113-7Search in Google Scholar

Nishi O, Nishi K, Akaishi T, Shirasawa E. Detection of cell adhesion molecules in lens epithelial cells of human cataracts. Invest Ophthalmol Vis Sci 1997;38:579–85.Search in Google Scholar

McLean SM, Mathew MRK, Kelly JB, et al. Detection of integrins in human cataract lens epithelial cells and two mammalian lens epithelial cell lines. Br J Ophthalmol 2005;89:1506–9.10.1136/bjo.2005.071886Search in Google Scholar

Bellis SL. Variant glycosylation: an underappreciated regulatory mechanism for β1 integrins. Biochim Biophys Acta 2004;1663:52–60.10.1016/j.bbamem.2004.03.012Search in Google Scholar

Sørensen DB, Dahl K, Ersboll AK, Kirkeby S, d’Apice AJF, Hansen AK. Aggression in cataract-bearing α-1,3-galactosyltransferase knockout mice. Lab Anim 2008;42:34–44.10.1258/la.2007.006057Search in Google Scholar

Galili U, Shohet SB, Kobrin E, Stults CLM, Macher BA. Man, apes, and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 1988;263:17755–62.10.1016/S0021-9258(19)77900-9Search in Google Scholar

Joziasse DH, Shaper JH, Jabs EW, Shaper NL. Characterization of an α1-3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene. J Biol Chem 1991;266:6991–8.10.1016/S0021-9258(20)89600-8Search in Google Scholar

Cooling L. Increased expression of i on HEMPAS red cells: a flow cytometric study. Transfusion 1997; 37:1102–3.10.1046/j.1537-2995.1997.371098016456.xSearch in Google Scholar

Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem 2004;73:491–537.10.1146/annurev.biochem.73.011303.074043Search in Google Scholar

Hakomori S-I. Cancer-associated glycosphingolipid antigens: their structure, organization and function. Acta Anat (Basel) 1998;161:79–90.10.1159/000046451Search in Google Scholar

Knowles BB, Rappaport J, Solter D. Murine embryonic antigen (SSEA-1) is expressed on human cells and structurally related human group antigen I is expressed on mouse embryos. Dev Biol 1982;93:54–8.10.1016/0012-1606(82)90238-XSearch in Google Scholar

Kapadia A, Feizi T, Evans MJ. Changes in the expression and polarization of blood group I and i antigens in post-implantation embryos and teratocarcinomas associated with cell differentiation. Exp Cell Res 1981; 131:185–95.10.1016/0014-4827(81)90418-3Search in Google Scholar

Boughton BJ. Anti-i cold agglutinins in choriocarcinomatosis: trophoblastic i antigen. J Clin Pathol 1979;32:523–7.10.1136/jcp.32.6.5231145731381330Search in Google Scholar

GEO Profiles, National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/sites/entrez?db=geo (Last accessed 4/2010).Search in Google Scholar

Goh SH, Josleyn M, Lee YT, et al. The human reticulocyte transcriptome. Physiol Genomics 2007; 30:172–8.10.1152/physiolgenomics.00247.200617405831Search in Google Scholar

eISSN:
1930-3955
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Laboratory Medicine