Requiere autenticación

Scianna: the lucky 13th blood group system


Cite

Wagner FF, Poole J, Flegel WA. Scianna antigens including Rd are expressed by ERMAP. Blood 2003;101:752–7.10.1182/blood-2002-07-206412393480Search in Google Scholar

Schmidt RP, Griffitts JJ, Northman FF. A new antibody, anti-Sm, reacting with a high incidence antigen. Transfusion 1962;2:338–40.10.1111/j.1537-2995.1962.tb00250.x13908792Search in Google Scholar

Anderson C, Hunter J, Zipursky A, Lewis M, Chown B. An antibody defining a new blood group antigen, Bu-a. Transfusion 1963;3:30–3.10.1111/j.1537-2995.1963.tb04599.x14012816Search in Google Scholar

Lewis M, Chown B, Schmidt RP, Griffitts JJ. A possible relationship between the blood group antigens Sm and Bu-a. Am J Hum Genet 1964;16:254–5.Search in Google Scholar

Lewis M, Chown B, Kaita H, Philipps S. Further observations on the blood group antigen Bu-a. Am J Hum Genet 1964;16:256–60.Search in Google Scholar

Seyfried H, Frankowska K, Giles CM. Further examples of anti-bu-a found in immunized donors. Vox Sang 1966; 11:512–16.10.1159/000465150Search in Google Scholar

Lewis M, Chown B, Kaita H. On the blood group antigens Bua and Sm. Transfusion 1967;7:92–4.10.1111/j.1537-2995.1967.tb04848.x6036673Search in Google Scholar

Giles CM, Bevan B, Hughes RM. A family showing independent segregation of Bua and Ytb. Vox Sang 1970; 18:265–6.Search in Google Scholar

Rowe GP. A second family showing independent segregation of Sc 2(Bua) and Ytb. Vox Sang 1986;50:191.10.1111/j.1423-0410.1986.tb04877.x3716292Search in Google Scholar

Lewis M, Kaita H, Chown B. Scianna blood group system. Vox Sang 1974;27:261–4.10.1111/j.1423-0410.1974.tb02416.x4415694Search in Google Scholar

Lewis M, Kaita H, Chown B. Genetic linkage between the human blood group loci Rh and Sc (Scianna). Am J Hum Genet 1976;28:619–20.Search in Google Scholar

Lewis M, Kaita H, Côté GB, Chown B, Giblett ER, Anderson JA. Chromosome 1: lods on linkage among eight loci: Do, ENO1, Fy, PGM1, Rh, UMPK, Sc, and PGD. Birth Defects Orig Artic Ser 1976;12:322–5.Search in Google Scholar

Lewis M, Kaita H, Chown B. Relative positions of chromosome 1 loci Fy, PGM1, Sc, UMPK, Rh, PGD and ENO1 in man. Can J Genet Cytol 1977;19:695–709.10.1139/g77-076416891Search in Google Scholar

Lewis M, Kaita H, Giblett ER, Anderson JE. Data on chromosome 1 loci Fy, PGM1, Sc, UMPK, Rh, PGD, and ENO1: two-point lods, R:NR counts, multipoint information, and map. Cytogenet Cell Genet 1978;22:392–5.10.1159/000130980110524Search in Google Scholar

Noades JE, Corney G, Cook PJ, et al. The Scianna blood group lies distal to uridine monophosphate kinase on chromosome 1p. Ann Hum Genet 1979;43:121–32.10.1111/j.1469-1809.1979.tb02004.x230780Search in Google Scholar

McCreary J, Vogler AL, Sabo B, Eckstein EG, Smith TR. Another minus-minus phenotype: Bu(a-)Sm-, two examples in one family [abstract]. Transfusion 1973;13:350.Search in Google Scholar

Nason SG, Vengelen-Tyler V, Cohen N, Best M, Quirk J. A high incidence antibody (anti-Sc3) in the serum of a Sc:-1,-2 patient. Transfusion 1980;20:531–5.10.1046/j.1537-2995.1980.20581034505.x7423592Search in Google Scholar

Devine P, Dawson FE, Motschman TL, et al. Serologic evidence that Scianna null (Sc:-1,-2) red cells lack multiple high-frequency antigens. Transfusion 1988;28:346–9.10.1046/j.1537-2995.1988.28488265264.x3388480Search in Google Scholar

Woodfield DG, Giles C, Poole J, Oraka R, Tolanu T. A further null phenotype (Sc-1-2) in Papua New Guinea [Abstract]. 21st Congress of the Int Soc Haem and 19th Congress of the ISBT, Sydney, Australia, May 1986; 651.Search in Google Scholar

Rausen AR, Rosenfield RE, Alter AA, et al. A “new” infrequent red cell antigen, Rd (radin). Transfusion 1967;7:336–42.10.1111/j.1537-2995.1967.tb04864.x6069618Search in Google Scholar

Lundsgaard A, Jensen KG. Two new examples of anti-Rd. A preliminary report on the frequency of the Rd (Radin) antigen in the Danish population. Vox Sang 1968;14:452–7.Search in Google Scholar

Lewis M, Kaita H. Genetic linkage between the Radin and Rh blood group loci. Vox Sang 1979;37:286–9.10.1111/j.1423-0410.1979.tb02306.x118583Search in Google Scholar

Lewis M, Kaita H, Philipps S, et al. The position of the Radin blood group locus in relation to other chromosome l loci. Ann Hum Genet 1980;44(Pt 2):179–84.10.1111/j.1469-1809.1980.tb00956.x6459052Search in Google Scholar

Spring FA, Herron R, Rowe G. An erythrocyte glycoprotein of apparent Mr 60,000 expresses the Sc1 and Sc2 antigens. Vox Sang 1990;58:122–5.Search in Google Scholar

Spring FA. Characterization of blood-group-active erythrocyte membrane glycoproteins with human antiseras. Transfus Med 1993;3:167–78.10.1111/j.1365-3148.1993.tb00112.xSearch in Google Scholar

Su YY, Gordon CT, Ye TZ, Perkins AC, Chui DH. Human ERMAP: an erythroid adhesion/receptor transmembrane protein. Blood Cells Mol Dis 2001;27:938–49.10.1006/bcmd.2001.046511783959Search in Google Scholar

Xu H, Foltz L, Sha Y, et al. Cloning and characterization of human erythroid membrane-associated protein, human ERMAP. Genomics 2001;76:2–4.10.1006/geno.2001.660011549310Search in Google Scholar

Ensembl entry for ERMAP, number ENSG00000164010 2010. http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=1:43276635–43326634. Accessed July 14, 2010.Search in Google Scholar

Entrez Gene entry for ERMAP. http://www.ncbi.nlm.nih. gov/gene/114625. Accessed July 14, 2010.Search in Google Scholar

Havana entry for ERMAP, transcript numbers OTTHUMT00000020180 through OTTHUMT 00000020184 2010. http://vega.sanger.ac.uk/Homo_ sapiens/Gene/Summary?g=OTTHUMG00000007619. Accessed July 14, 2010.Search in Google Scholar

Ensembl Transcript View, ERMAP’s 5 listed transcripts 2010. http://www.ensembl.org/Homo_sapiens/Gene/Su mmary?db=core;g=ENSG00000164010;r=1:43276635–43326634;t=ENST00000470938. Accessed July 14, 2010.Search in Google Scholar

Fuchisawa A, Lomas-Francis C, Hue-Roye K, Reid ME. The polymorphism nt 76 in exon 2 of SC is more frequent in whites than in blacks. Immunohematology 2009;25:18–19.10.21307/immunohematology-2019-225Search in Google Scholar

Hashmi G, Shariff T, Zhang Y, et al. Determination of 24 minor red blood cell antigens for more than 2000 blood donors by high-throughput DNA analysis [published correction appears in Transfusion 2007;47:952]. Transfusion 2007;47:736–47.10.1111/j.1537-2995.2007.01178.x17381634Search in Google Scholar

Ribeiro KR, Guarnieri MH, da Costa DC, Costa FF, Pellegrino J Jr, Castilho L. DNA array analysis for red blood cell antigens facilitates the transfusion support with antigen-matched blood in patients with sickle cell disease. Vox Sang 2009;97:147–52.10.1111/j.1423-0410.2009.01185.x19392786Search in Google Scholar

Skradski KJ, McCreary J, Sabo B, Polesky HF. An antibody against a high frequency antigen absent on red cells of the Scianna:-2,-2 phenotype [abstract]. Transfusion 1982 (22):406.Search in Google Scholar

Hue-Roye K, Chaudhuri A, Velliquette RW, et al. STAR: a novel high-prevalence antigen in the Scianna blood group system. Transfusion 2005;45:245–7.10.1111/j.1537-2995.2004.04226.x15660834Search in Google Scholar

Flegel WA, Chen Q, Reid ME, et al. SCER and SCAN: two novel high-prevalence antigens in the Scianna blood group system. Transfusion 2005;45:1940–4.10.1111/j.1537-2995.2005.00646.x16371048Search in Google Scholar

Smigielski EM, Sirotkin K, Ward M, Sherry ST. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 2000;28:352–5.10.1093/nar/28.1.35210249610592272Search in Google Scholar

The International HapMap Project Homepage 2010. http://hapmap.ncbi.nlm.nih.gov/. Accessed July 14, 2010.Search in Google Scholar

Stephan W. Genetic hitchhiking versus background selection: the controversy and its implications. Philos Trans R Soc Lond B Biol Sci 2010;365:1245–53.10.1098/rstb.2009.0278287181520308100Search in Google Scholar

Williams AF, Barclay AN. The immunoglobulin super-family—domains for cell surface recognition. Annu Rev Immunol 1988;6:381–405.10.1146/annurev.iy.06.040188.0021213289571Search in Google Scholar

Cannon JP. Plasticity of the immunoglobulin domain in the evolution of immunity. Integr Comp Biol 2009;49:187–96.10.1093/icb/icp01821669857Search in Google Scholar

Harpaz Y, Chothia C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol 1994;238: 528–39.10.1006/jmbi.1994.13128176743Search in Google Scholar

Aricescu AR, Jones EY. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr Opin Cell Biol 2007;19:543–50.10.1016/j.ceb.2007.09.01017935964Search in Google Scholar

Peggs KS, Allison JP. Co-stimulatory pathways in lymphocyte regulation: the immunoglobulin superfamily. Br J Haematol 2005;130:809–24.10.1111/j.1365-2141.2005.05627.x16156851Search in Google Scholar

Vogel C, Chothia C. Protein family expansions and biological complexity. PLoS Comput Biol 2006;2:e48.10.1371/journal.pcbi.0020048Search in Google Scholar

Simon TL, Dzik WH, Snyder EL, Stowell CP, Strauss RG, eds. Rossi’s Principles of Transfusion Medicine. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2002.Search in Google Scholar

Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002;2:116–26.10.1038/nri727Search in Google Scholar

Mather IH, Jack LJ. A review of the molecular and cellular biology of butyrophilin, the major protein of bovine milk fat globule membrane. J Dairy Sci 1993;76:3832–50.10.3168/jds.S0022-0302(93)77726-7Search in Google Scholar

Rhodes DA, Stammers M, Malcherek G, Beck S, Trowsdale J. The cluster of BTN genes in the extended major histocompatibility complex. Genomics 2001;71:351–62.10.1006/geno.2000.640611170752Search in Google Scholar

Robenek H, Hofnagel O, Buers I, et al. Butyrophilin controls milk fat globule secretion. Proc Natl Acad Sci U S A 2006;103:10385–90.10.1073/pnas.0600795103150246716801554Search in Google Scholar

Smith IA, Knezevic BR, Ammann JU, et al. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. J Immunol 2010;184: 3514–25.10.4049/jimmunol.090041620208008Search in Google Scholar

Valentonyte R, Hampe J, Huse K, et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2 [published correction appears in Nat Genet 2005;37:652]. Nat Genet 2005;37:357–64.10.1038/ng151915735647Search in Google Scholar

Arnett HA, Escobar SS, Viney JL. Regulation of costimulation in the era of butyrophilins. Cytokine 2009; 46:370–5.10.1016/j.cyto.2009.03.00919380239Search in Google Scholar

Nguyen T, Liu XK, Zhang Y, Dong C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol 2006;176:7354–60.10.4049/jimmunol.176.12.7354162652616751379Search in Google Scholar

Meyer M, Gaudieri S, Rhodes DA, Trowsdale J. Cluster of TRIM genes in the human MHC class I region sharing the B30.2 domain. Tissue Antigens 2003;61:63–71.10.1034/j.1399-0039.2003.610105.x12622776Search in Google Scholar

Vernet C, Boretto J, Mattei MG, et al. Evolutionary study of multigenic families mapping close to the human MHC class I region. J Mol Evol 1993;37:600–12.10.1007/BF00182746Search in Google Scholar

Jack LJ, Mather IH. Cloning and analysis of cDNA encoding bovine butyrophilin, an apical glycoprotein expressed in mammary tissue and secreted in association with the milk-fat globule membrane during lactation. J Biol Chem 1990; 265:14481–6.10.1016/S0021-9258(18)77328-6Search in Google Scholar

Tazi-Ahnini R, Henry J, Offer C, Bouissou-Bouchouata C, Mather IH, Pontarotti P. Cloning, localization, and structure of new members of the butyrophilin gene family in the juxta-telomeric region of the major histocompatibility complex. Immunogenetics 1997;47:55–63.10.1007/s002510050326Search in Google Scholar

Weinert C, Grütter C, Roschitzki-Voser H, Mittl PR, Grütter MG. The crystal structure of human pyrin b30.2 domain: implications for mutations associated with familial Mediterranean fever. J Mol Biol 2009;394:226–36.10.1016/j.jmb.2009.08.059Search in Google Scholar

Woo JS, Imm JH, Min CK, Kim KJ, Cha SS, Oh BH. Structural and functional insights into the B30.2/SPRY domain. EMBO J 2006;25:1353–63.10.1038/sj.emboj.7600994Search in Google Scholar

Woo JS, Suh HY, Park SY, Oh BH. Structural basis for protein recognition by B30.2/SPRY domains. Mol Cell 2006;24:967–76.10.1016/j.molcel.2006.11.009Search in Google Scholar

Jeong J, Rao AU, Xu J, et al. The PRY/SPRY/B30.2 domain of butyrophilin 1A1 (BTN1A1) binds to xanthine oxidoreductase: implications for the function of BTN1A1 in the mammary gland and other tissues. J Biol Chem 2009; 284:22444–56.10.1074/jbc.M109.020446Search in Google Scholar

Garofalo F, Pellegrino D, Amelio D, Tota B. The Antarctic hemoglobinless icefish, fifty five years later: a unique cardiocirculatory interplay of disaptation and phenotypic plasticity. Comp Biochem Physiol A Mol Integr Physiol 2009;154:10–28.10.1016/j.cbpa.2009.04.621Search in Google Scholar

Yergeau DA, Cornell CN, Parker SK, Zhou Y, Detrich HW 3rd. bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish. Dev Biol 2005;283:97–112.10.1016/j.ydbio.2005.04.006Search in Google Scholar

Ye TZ, Gordon CT, Lai YH, et al. Ermap, a gene coding for a novel erythroid specific adhesion/receptor membrane protein. Gene 2000;242:337–45.10.1016/S0378-1119(99)00516-8Search in Google Scholar

Kuriyan MA, Oyen RE, Marsh WL. Demonstration of Diego (Dib) and Scianna (Scl) antigens on phagocytic leukocytes of the blood. Transfusion 1978;18:361–4.10.1046/j.1537-2995.1978.18378205148.x351885Search in Google Scholar

Rojewski MT, Schrezenmeier H, Flegel WA. Tissue distribution of blood group membrane proteins beyond red cells: evidence from cDNA libraries. Transfus Apher Sci 2006;35:71–82.10.1016/j.transci.2006.05.00816956794Search in Google Scholar

He XR, He YY, Chen Y, Ye TZ. Expression of human ERMAP gene in fetal tissues [in Chinese]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2006;14:972–5.Search in Google Scholar

Zhang XH, Ye TZ, Hu B, Si WZ. Quantification of human ERMAP by using real-time FQ-PCR [in Chinese]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2005;13:154–7.Search in Google Scholar

He YY, Zhang XH, Ye TZ, Wu ZL. Study on the expression of human ERMAP gene in erythropoietic and macrophage differentiation of K562 cells [in Chinese]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2005;13:553–6.Search in Google Scholar

He YY, Zhang XH, Ye TZ, Wu ZL. Expression of human ERMAP gene in different cell lines [in Chinese]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2005;13:819–22.Search in Google Scholar

Liang JF, Chen Y, Ye TZ, et al. Effects of human ERMAP-siRNA on erythroid differentiation of K562 cells induced by Ara-C [in Chinese]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2009;17:49–53.Search in Google Scholar

Lin LD, He XR, Ye TZ, et al. Expression of human ERMAP gene in umbilical cord blood mononuclear cells during differentiation and development towards erythroid lineage [in Chinese]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2008;16:328–32.Search in Google Scholar

Reid ME, Lomas-Francis C. The blood group antigen factsbook. 2nd ed. San Diego, CA: Academic Press; 2004.10.1016/B978-012586585-2/50007-XSearch in Google Scholar

Velliquette RW. Review: the Scianna blood group system. Immunohematology 2005;21:70–6.10.21307/immunohematology-2019-397Search in Google Scholar

Kaye T, Williams EM, Garner SF, Leak MR, Lumley H. AntiSc1 in pregnancy. Transfusion 1990;30:439–40.10.1046/j.1537-2995.1990.30590296379.x2360237Search in Google Scholar

Tregellas WM, Holub MP, Moulds JJ, Lacey PA. An example of autoanti-Sc1 demonstrable in serum but not in plasma [abstract]. Transfusion 1979;19:650.Search in Google Scholar

McDowell MA, Stocker I, Nance S, Garratty G. Auto anti-Sc1 associated with autoimmune hemolytic anemia [abstract]. Transfusion 1986;26:578.Search in Google Scholar

Owen I, Chowdhury V, Reid ME, Poole J, Marsh JC, Hows JM. Autoimmune hemolytic anemia associated with antiSc1. Transfusion 1992;32:173–6.10.1046/j.1537-2995.1992.32292180150.x1542925Search in Google Scholar

Ramsey G, Williams LM. Autoimmune hemolytic anemia with auto-anti-Sc1, weakened Sc:1 antigen, and superimposed transfusion-associated acute hemolysis [abstract]. Transfusion 2010;50(2S):156A.Search in Google Scholar

Steane EA, Sheehan RG, Brooks BD, Frenkel EP. Therapeutic plasmapheresis in patients with antibodies to high-frequency red cell antigens. Prog Clin Biol Res 1982; 106:347–53.Search in Google Scholar

DeMarco M, Uhl L, Fields L, Pacini D, Gorlin JB, Kruskall MS. Hemolytic disease of the newborn due to the Scianna antibody, anti-Sc2. Transfusion 1995;35:58–60.10.1046/j.1537-2995.1995.35195090664.x7998072Search in Google Scholar

Peloquin P, Moulds M, Keenan J, Kennedy M. Anti-Sc3 as an apparent autoantibody in two patients [abstract]. Transfusion 1989;29(Suppl):49S.Search in Google Scholar

Winn LC, Eska PL, Grindon AJ. Anti-Rd (Radin) following the transfusion of a Radin positive unit of blood. Transfusion 1976;16:351–2.10.1046/j.1537-2995.1976.16476247056.x951730Search in Google Scholar

Wagner FF, Frohmajer A, Ladewig B, et al. Weak D alleles express distinct phenotypes. Blood 2000;95:2699–708.10.1182/blood.V95.8.2699Search in Google Scholar

Seltsam A, Grueger D, Blasczyk R, Flegel WA. Easy identification of antibodies to high-prevalence Scianna antigens and detection of admixed alloantibodies using soluble recombinant Scianna protein. Transfusion 2009; 49:2090–6.10.1111/j.1537-2995.2009.02255.x531814419555420Search in Google Scholar

Reid ME. Complexities of the Dombrock blood group system revealed. Transfusion 2005;45(2 Suppl):92S–9S.10.1111/j.1537-2995.2005.00527.x16086795Search in Google Scholar

Higgins JM, Sloan SR. Stochastic modeling of human RBC alloimmunization: evidence for a distinct population of immunologic responders. Blood 2008;112:2546–53.10.1182/blood-2008-03-14641518535200Search in Google Scholar

Reid ME. Transfusion in the age of molecular diagnostics. Hematology Am Soc Hematol Educ Program 2009:171–7.10.1182/asheducation-2009.1.171290678420008196Search in Google Scholar

Veldhuisen B, van der Schoot CE, de Haas M. Blood group genotyping: from patient to high-throughput donor screening. Vox Sang 2009;97:198–206.10.1111/j.1423-0410.2009.01209.x19548962Search in Google Scholar

Flegel WA. Blood group genotyping in Germany. Transfusion 2007;47(1 Suppl):47S–53S.10.1111/j.1537-2995.2007.01310.x17593286Search in Google Scholar

Hillyer CD, Shaz BH, Winkler AM, Reid M. Integrating molecular technologies for red blood cell typing and compatibility testing into blood centers and transfusion services. Transfus Med Rev 2008;22:117–32.10.1016/j.tmrv.2007.12.00218353252Search in Google Scholar

Garraty G, Reid M, Westhoff C, eds. A Workshop on Methods in Molecular Immunohematology. Transfusion 2010;47:1S–100S.Search in Google Scholar

Denomme GA, Flegel WA. Applying molecular immunohematology discoveries to standards of practice in blood banks: now is the time. Transfusion 2008;48:2461–75.10.1111/j.1537-2995.2008.01855.x19054376Search in Google Scholar

eISSN:
1930-3955
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Laboratory Medicine