Requiere autenticación

Clinical significance of antibodies to antigens in the Raph, John Milton Hagen, I, Globoside, Gill, Rh-associated glycoprotein, FORS, JR, LAN, Vel, CD59, and Augustine blood group systems


Cite

Crew VK, Burton N, Kagan A, et al. CD151, the first member of the tetraspanin (TM4) super family detected on erythrocytes is essential for the correct assembly of human basement membranes in kidney and skin. Blood 2003;102:4a. Search in Google Scholar

Daniels G. Human blood groups. 3rd ed. London, UK: Wiley-Blackwell, 2013.10.1002/9781118493595 Search in Google Scholar

Hayes M. Raph blood group system. Immunohematology 2014;30:6–10.10.21307/immunohematology-2019-091 Search in Google Scholar

Reid ME, Lomas-Francis C, Olsson ML. The blood group antigen factsbook. 3rd ed. San Diego, CA: Academic Press, 2012.10.1016/B978-0-12-415849-8.00006-5 Search in Google Scholar

Johnson ST. JMH blood group system: a review. Immunohematology 2014;30:18–23.10.21307/immunohematology-2019-094 Search in Google Scholar

Daniels G, Flegel WA, Fletcher A, et al. International Society of Blood Transfusion Committee on Terminology for Red Cell Surface Antigens: Cape Town report. Vox Sang 2007;92: 250–3.10.1111/j.1423-0410.2007.00887.x17348875 Search in Google Scholar

Seltsam A, Agaylan A, Grueger D, et al. Rapid detection of JMH antibodies with recombinant Sema7A(CD108) protein and the particle gel immunoassay. Transfusion 2008;48:1151–6.10.1111/j.1537-2995.2008.01660.x18422858 Search in Google Scholar

Bierhuizen MFA, Mattei MG, Fukuda M. Expression of the developmental I antigen by a cloned human cDNA encoding a member of a ß-1,6-N-acetylglucosaminyltransferase gene family. Genes Dev 1993;7:468–78.10.1101/gad.7.3.4688449405 Search in Google Scholar

Yu LC, Twu YC, Chang CY, et al. Molecular basis of the adult i phenotype and the gene responsible for the expression of the human blood group I antigen. Blood 2001;98:3840–5.10.1182/blood.V98.13.3840 Search in Google Scholar

Inaba N, Hiruma T, Togayachi A, et al. A novel I-branching ß-1,6-N-acetylglucosaminyltransferase involved in the human blood group I antigen expression. Blood 2003;101:2870–6.10.1182/blood-2002-09-283812468428 Search in Google Scholar

Hellberg A, Westman JS, Olsson ML. An update on the GLOB blood group system and collection. Immunohematology 2013;29:19–24.10.21307/immunohematology-2019-119 Search in Google Scholar

Roudier N, Verbavatz JM, Maurel C, et al. Evidence for the presence of aquaporin-3 in human red blood cells. J Biol Chem 1998;273:8407–12.10.1074/jbc.273.14.84079525951 Search in Google Scholar

Tilley L, Gren C, Poole J, et al. A new blood group system, RHAG: three antigens resulting from amino acid substitutions in the Rh-associated glycoprotein. Vox Sang 2010;8:151–9.10.1111/j.1423-0410.2009.01243.x19744193 Search in Google Scholar

Barr K, Korchagina E, Popova I, et al. Monoclonal anti-A activity against the FORS1 (Forssman) antigen.Transfusion 2014;55:129–36.10.1111/trf.1277325039359 Search in Google Scholar

Svensson L, Hult AK, Stamps R, et al. Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood 2013;121:1459–68.10.1182/blood-2012-10-45505523255552 Search in Google Scholar

Storry J. Five new blood group systems: what next? ISBT Sci Ser 2014;9:136–40.10.1111/voxs.12078 Search in Google Scholar

Castilho L, Reid ME. A review of JR blood group system. Immunohematology 2013;29:63–8.10.21307/immunohematology-2019-126 Search in Google Scholar

Saison C, Helia V, Ballif BA, et al. Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 2012;44:174–7.10.1038/ng.1070365363122246505 Search in Google Scholar

Zelinski T, Coghlan G, Liu XQ, et al. ABCG2 null alleles define the Jr(a–) blood group phenotype. Nat Genet 2012;44:131–2.10.1038/ng.107522246507 Search in Google Scholar

Ogasawara K, Osabe T, Susuki Y, et al. A new ABCG2 null allele with a 27kb deletion including the promoter region causing the Jr(a–) phenotype. Transfusion 2015;55:1467–71.10.1111/trf.1296925522810 Search in Google Scholar

Coghlan G. The JR blood group system: genetic and molecular investigations. ISBT Sci Ser 2012;7:260–3.10.1111/j.1751-2824.2012.01558.x Search in Google Scholar

Hue-Roye K, Lomas-Francis C, Coghlan G, et al. The JR blood group system (ISBT 032): molecular characterization of the three new null alleles. Transfusion 2013;53:1575–9.10.1111/j.1537-2995.2012.03930.x23066723 Search in Google Scholar

Fujita S, Kashiwagi H, Tomimatsu T, et al. Expression levels of ABCG2 on cord red blood cells and study of fetal anemia associated with anti-Jr(a). Transfusion 2016;56:1171–81.10.1111/trf.1351526868047 Search in Google Scholar

Endo Y, Ito S, Ogiyama Y. Suspected anemia caused by maternal anti-Jr(a) antibodies: a case report. Biomark Res 2015;3:23.10.1186/s40364-015-0048-x454620626301094 Search in Google Scholar

Peyrard T. The LAN blood group system: a review. Immunohematology 2013;29:131–5.10.21307/immunohematology-2019-135 Search in Google Scholar

Reid ME, Hue-Roye K, Huamg A, et al. Alleles of the LAN blood group system: molecular and serologic investigation. Transfusion 2014;54:398–404. Search in Google Scholar

McBean R, Wilson B, Liew Y, et al. Quantitation of Lan antigen in Lan+, Lan+w, and Lan– phenotypes. Blood Transfus 2015; 13:662–5. Search in Google Scholar

Hayer-Wigman I, deHaas M, van der Schoot CE. The immune response to the VEL antigen is HLA class II DRB1*11 restricted. Vox Sang 2013;105(suppl 1):29. Search in Google Scholar

Race RR, Sanger R. Blood groups in man. 6th ed. Philadelphia, PA: Blackwell Science Ltd., 1975:413. Search in Google Scholar

Storry JR, Joud M, Christophersen MK, et al. Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype. Nat Gen 2013;45:537–41.10.1038/ng.260023563606 Search in Google Scholar

Vejic A, Haer-Wigman L, Stephens JC, et al. SMIM1 underlines the Vel blood group and influences red blood cell traits. Nat Genet 2013;45:542–5.10.1038/ng.2603417928223563608 Search in Google Scholar

Ballif BA, Helia V, Peyrard T, et al. Disruption of SMIM1 causes the Vel– blood type. EMBO Mol Med 2013;5:751–61.10.1002/emmm.201302466366231723505126 Search in Google Scholar

Storry JR, Mallory D. Misidentification of anti-Vel due to inappropriate use of techniques. Immunohematology 1994;10: 83–6.10.21307/immunohematology-2019-927 Search in Google Scholar

Anliker M, Zabera I, Hochsmann B, et al. A new blood group antigen is defined by anti-CD59 detected in a CD59-deficient patient. Transfusion 2014;54:1817–22.10.1111/trf.12531531720124383981 Search in Google Scholar

McBean R, Liew Y, Wilson B, et al. Genotyping confirms inheritance of the rare At(a–) type in a case of hemolytic disease of the newborn. J Path Clin Res 2016;2:53–5.10.1002/cjp2.33485812427499913 Search in Google Scholar

Applewhaite F, Ginsberg V, Gerena J, et al. A very frequent red cell antigen Ata. Vox Sang 1967;13:444–5.10.1111/j.1423-0410.1967.tb03789.x6050732 Search in Google Scholar

Daniels G, Ballif B, Helias V, et al. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type. Blood 2015;125:3651–4.10.1182/blood-2015-03-631598445880325896650 Search in Google Scholar

Rose JB, Naydenova Z, Bang A, et al. Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection. Am J Physiol Heart Circ Physiol 2010;298:H771–7.10.1152/ajpheart.00711.2009377407220035027 Search in Google Scholar

eISSN:
1930-3955
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Laboratory Medicine