Acceso abierto

Comparative study of Kalman filter-based target motion analysis by incorporating Doppler frequency measurements


Cite

Alexopoulos, A., Kandil, A., Orzechowski, P. and Badreddin, E. 2013. “A Comparative Study of Collision Avoidance Techniques for Unmanned Aerial Vehicles,” in 2013 IEEE International Conference on Systems, Man, and Cybernetics, October, pp. 1969–1974, doi: 10.1109/SMC.2013.338.AlexopoulosA.KandilA.OrzechowskiP.BadreddinE.2013“A Comparative Study of Collision Avoidance Techniques for Unmanned Aerial Vehicles,”in2013 IEEE International Conference on Systems, Man, and CyberneticsOctober, pp.19691974doi:10.1109/SMC.2013.338Open DOISearch in Google Scholar

Al-Hourani, A., Evans, R. J., Farrell, P. M., Moran, B., Martorella, M., Kandeepan, S., Skafidas, S. and Parampalli, U. 2018. “Chapter 7 -Millimeter-wave integrated radar systems and techniques”, In Chellappa, R. and Theodoridis, S. (Eds), Academic Press Library in Signal Processing, Vol. 7 Academic Press, San Diego, January pp. 317–363, doi: 10.1016/B978-0-12-811887-0.00007-9.Al-HouraniA.EvansR. J.FarrellP. M.MoranB.MartorellaM.KandeepanS.SkafidasS.ParampalliU.2018“Chapter 7 -Millimeter-wave integrated radar systems and techniques”InChellappaR.TheodoridisS.(Eds)Academic Press Library in Signal ProcessingVol.7Academic PressSan Diego, Januarypp.317363doi:10.1016/B978-0-12-811887-0.00007-9Open DOISearch in Google Scholar

Arasaratnam, I. and Haykin, S. 2009. “Cubature Kalman Filters,” IEEE Transactions on Automatic Control 54(6): 1254–1269, doi: 10.1109/TAC.2009.2019800.ArasaratnamI.HaykinS.2009“Cubature Kalman Filters,”IEEE Transactions on Automatic Control54(6)12541269doi:10.1109/TAC.2009.2019800Open DOISearch in Google Scholar

Arulampalam, S. 2000. “A Comparison of Recursive Style Angle-Only Target Motion Analysis Algorithms,” ELECTRONICS RESEARCH LAB SALISBURY (AUSTRALIA), DSTO-TR-0917, January, Available at: https://apps.dtic.mil/docs/citations/ADA376954 (Accessed September 15, 2019).ArulampalamS.2000“A Comparison of Recursive Style Angle-Only Target Motion Analysis Algorithms,”ELECTRONICS RESEARCH LAB SALISBURY (AUSTRALIA)DSTO-TR-0917, January, Available at: https://apps.dtic.mil/docs/citations/ADA376954 (Accessed September 15, 2019)Search in Google Scholar

Arulampalam, S., Badriasl, L. and Ristic, B. 2020. “A Closed-Form Estimator for Bearings-Only Fusion of Heterogeneous Passive Sensors,” IEEE Transactions on Signal Processing 68: 6681–6695, doi: 10.1109/TSP.2020.3035289.ArulampalamS.BadriaslL.RisticB.2020“A Closed-Form Estimator for Bearings-Only Fusion of Heterogeneous Passive Sensors,”IEEE Transactions on Signal Processing6866816695doi:10.1109/TSP.2020.3035289Open DOISearch in Google Scholar

Bar-Shalom, Y. and Li, X-. R. 2001. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software John Wiley & Sons, Inc, New York, NY.Bar-ShalomY.LiX-. R.2001Estimation with Applications to Tracking and Navigation: Theory Algorithms and SoftwareJohn Wiley & Sons, IncNew York, NY10.1002/0471221279Search in Google Scholar

Becker, K. 1993. “Simple linear theory approach to TMA observability,” IEEE Transactions on Aerospace and Electronic Systems 29(2): 575–578, doi: 10.1109/7.210096.BeckerK.1993“Simple linear theory approach to TMA observability,”IEEE Transactions on Aerospace and Electronic Systems29(2):575578doi:10.1109/7.210096Open DOISearch in Google Scholar

Ciaparrone, G., Sánchez, F. L., Tabik, S., Troiano, L., Tagliaferri, R. and Herrera, F. 2020. “Deep Learning in Video Multi-Object Tracking: A Survey,” Neurocomputing 381: 61–88, doi: 10.1016/j.neucom.2019.11.023 arXiv: 1907.12740.CiaparroneG.SánchezF. L.TabikS.TroianoL.TagliaferriR.HerreraF.2020“Deep Learning in Video Multi-Object Tracking: A Survey,”Neurocomputing3816188doi:10.1016/j.neucom.2019.11.023arXiv: 1907.12740Open DOISearch in Google Scholar

Do˘gançay, K. 2015. “3D Pseudolinear Target Motion Analysis From Angle Measurements,” IEEE Transactions on Signal Processing 63(6): 1570–1580, doi: 10.1109/TSP.2015.2399869.Do˘gançayK.2015“3D Pseudolinear Target Motion Analysis From Angle Measurements,”IEEE Transactions on Signal Processing63(6):15701580doi:10.1109/TSP.2015.2399869Open DOISearch in Google Scholar

Fogel, E. and Gavish, M. 1988. “Nth-order dynamics target observability from angle measurements,” IEEE Transactions on Aerospace and Electronic Systems 24(3): 305–308, doi: 10.1109/7.192098.FogelE.GavishM.1988“Nth-order dynamics target observability from angle measurements,”IEEE Transactions on Aerospace and Electronic Systems24(3):305308doi:10.1109/7.192098Open DOISearch in Google Scholar

Hammel, S. E. and Aidala, V. J. 1985. “Observability Requirements for Three-Dimensional Tracking via Angle Measurements,” IEEE Transactions on Aerospace and Electronic Systems AES-21(2): 200–207, doi: 10.1109/TAES.1985.310617.HammelS. E.AidalaV. J.1985“Observability Requirements for Three-Dimensional Tracking via Angle Measurements,”IEEE Transactions on Aerospace and Electronic SystemsAES-21(2):200207doi:10.1109/TAES.1985.310617Open DOISearch in Google Scholar

Hügler, P., Roos, F., Schartel, M., Geiger, M. and Waldschmidt, C. 2018. “Radar Taking Off: New Capabilities for UAVs,” IEEE Microwave Magazine 19(7): 43–53, doi: 10.1109/MMM.2018.2862558.HüglerP.RoosF.SchartelM.GeigerM.WaldschmidtC.2018“Radar Taking Off: New Capabilities for UAVs,”IEEE Microwave Magazine19(7):4353doi:10.1109/MMM.2018.2862558Open DOISearch in Google Scholar

Jang, B. and Kim, H. 2019. “Indoor Positioning Technologies Without Offline Fingerprinting Map: A Survey,” IEEE Communications Surveys Tutorials 21(1): 508–525, doi: 10.1109/COMST.2018.2867935.JangB.KimH.2019“Indoor Positioning Technologies Without Offline Fingerprinting Map: A Survey,”IEEE Communications Surveys Tutorials21(1):508525doi:10.1109/COMST.2018.2867935Open DOISearch in Google Scholar

Jauffret, C. and Pillon, D. 1989. “New Observability Criterion in Target Motion Analysis,” In Chan, Y. T. (Ed.), Underwater Acoustic Data Processing, ser NATO ASI Series Springer Netherlands, Dordrecht, pp. 479–484, doi: 10.1007/978-94-009-2289-1_53.JauffretC.PillonD.1989“New Observability Criterion in Target Motion Analysis,”InChanY. T.(Ed.)Underwater Acoustic Data Processingser NATO ASI Series Springer NetherlandsDordrechtpp.479484doi:10.1007/978-94-009-2289-1_53Open DOISearch in Google Scholar

Jauffret, C. and Pillon, D. 1996. “Observability in passive target motion analysis,” IEEE Transactions on Aerospace and Electronic Systems 32(4): 1290–1300, doi: 10.1109/7.543850.JauffretC.PillonD.1996“Observability in passive target motion analysis,”IEEE Transactions on Aerospace and Electronic Systems32(4):12901300doi:10.1109/7.543850Open DOISearch in Google Scholar

Jauffret, C. and Pérez, A. 2018. “Efficient Pseudolinear Estimation for Bearings and Frequencies Target Motion Analysis,” 2018 21st International Conference on Information Fusion (FUSION), July. pp. 2556–2563, doi: 10.23919/ICIF.2018.8455271.JauffretC.PérezA.2018“Efficient Pseudolinear Estimation for Bearings and Frequencies Target Motion Analysis,”2018 21st International Conference on Information Fusion (FUSION)July. pp.25562563doi:10.23919/ICIF.2018.8455271Open DOISearch in Google Scholar

Jauffret, C., Pérez, A. and Pillon, D. 2017. “Observability: Range-Only Versus Bearings-Only Target Motion Analysis When the Observer Maneuvers Smoothly,” IEEE Transactions on Aerospace and Electronic Systems 53(6): 2814–2832, doi: 10.1109/TAES.2017.2716438.JauffretC.PérezA.PillonD.2017“Observability: Range-Only Versus Bearings-Only Target Motion Analysis When the Observer Maneuvers Smoothly,”IEEE Transactions on Aerospace and Electronic Systems53(6):28142832doi:10.1109/TAES.2017.2716438Open DOISearch in Google Scholar

Jin, F., Liu, K., Zhang, H., Ng, J. K. -Y., Guo, S., Lee, V. C. S. and Son, S. H. 2020. “Toward Scalable and Robust Indoor Tracking: Design, Implementation, and Evaluation,” IEEE Internet of Things Journal 7(2): 1192–1204, doi: 10.1109/JIOT.2019.2953376.JinF.LiuK.ZhangH.NgJ. K. -Y.GuoS.LeeV. C. S.SonS. H.2020“Toward Scalable and Robust Indoor Tracking: Design, Implementation, and Evaluation,”IEEE Internet of Things Journal7(2):11921204doi:10.1109/JIOT.2019.2953376Open DOISearch in Google Scholar

Julier, S. J. and Uhlmann, J. K. 2004. “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE 92(3): 401–422, doi: 10.1109/JPROC.2003.823141.JulierS. J.UhlmannJ. K.2004“Unscented filtering and nonlinear estimation,”Proceedings of the IEEE92(3):401422doi:10.1109/JPROC.2003.823141Open DOISearch in Google Scholar

Kalman, R. E. and Bucy, R. S. 1961. “New Results in Linear Filtering and Prediction Theory,” Journal of Basic Engineering 83(1): 95–108, doi: 10.1115/1.3658902.KalmanR. E.BucyR. S.1961“New Results in Linear Filtering and Prediction Theory,”Journal of Basic Engineering83(1):95108doi:10.1115/1.3658902Open DOISearch in Google Scholar

Kumar, A. S. A., George, B. and Mukhopadhyay, S. C. 2021. “Technologies and Applications of Angle Sensors: A Review,” IEEE Sensors Journal 21(6): 7195–7206, doi: 10.1109/JSEN.2020.3045461.KumarA. S. A.GeorgeB.MukhopadhyayS. C.2021“Technologies and Applications of Angle Sensors: A Review,”IEEE Sensors Journal21(6):71957206doi:10.1109/JSEN.2020.3045461Open DOISearch in Google Scholar

Laneuville, D. 2013. “Polar versus Cartesian velocity models for maneuvering target tracking with IMM,” Aerospace Conference, 2013 IEEE, pp. 1–15, doi: 10.1109/AERO.2013.6497387.LaneuvilleD.2013“Polar versus Cartesian velocity models for maneuvering target tracking with IMM,”Aerospace Conference, 2013 IEEEpp.115doi:10.1109/AERO.2013.6497387Open DOISearch in Google Scholar

Lee, T. -J., Yi, D. -H. and Cho, D. -I. 2016. “A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots,” Sensors, doi: 10.3390/s16030311.LeeT. -J.YiD. -H.ChoD. -I.2016“A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots,”Sensorsdoi:10.3390/s16030311481388626938540Open DOISearch in Google Scholar

Li, X. R. and Jilkov, V. P. 2003. “Survey of maneuvering target tracking. Part I. Dynamic models,” IEEE Transactions on Aerospace and Electronic Systems 39(4): 1333–1364, doi: 10.1109/TAES.2003.1261132.LiX. R.JilkovV. P.2003“Survey of maneuvering target tracking. Part I. Dynamic models,”IEEE Transactions on Aerospace and Electronic Systems39(4):13331364doi:10.1109/TAES.2003.1261132Open DOISearch in Google Scholar

Li, Y., Sun, H., Liu, D., Xu, J. and Wang, M. 2019. “Autonomous Navigation and Path Tracking Control on Field Roads in Hilly Areas,” Journal of Sensors 2019: 6738594, Available at: https://www.hindawi.com/journals/js/2019/6738594/.LiY.SunH.LiuD.XuJ.WangM.2019“Autonomous Navigation and Path Tracking Control on Field Roads in Hilly Areas,”Journal of Sensors20196738594, Available at: https://www.hindawi.com/journals/js/2019/6738594/.10.1155/2019/6738594Search in Google Scholar

Liu, J., Wang, Z. and Xu, M. 2020. “DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network,” Information Fusion 53: 289–304, doi: 10.1016/j.inffus.2019.06.012.LiuJ.WangZ.XuM.2020“DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network,”Information Fusion53289304doi:10.1016/j.inffus.2019.06.012Open DOISearch in Google Scholar

Luo, J., Han, Y. and Fan, L. 2018. “Underwater Acoustic Target Tracking: A Review,” Sensors 18(1): 112, doi: 10.3390/s18010112.LuoJ.HanY.FanL.2018“Underwater Acoustic Target Tracking: A Review,”Sensors18(1):112doi:10.3390/s18010112579633629301318Open DOISearch in Google Scholar

Nardone, S. C. and Aidala, V. J. 1981. “Observability Criteria for Bearings-Only Target Motion Analysis,” IEEE Transactions on Aerospace and Electronic Systems AES-17(2): 162–166, doi: 10.1109/TAES.1981.309141.NardoneS. C.AidalaV. J.1981“Observability Criteria for Bearings-Only Target Motion Analysis,”IEEE Transactions on Aerospace and Electronic SystemsAES-17(2):162166doi:10.1109/TAES.1981.309141Open DOISearch in Google Scholar

Passerieux, J. M., Pillon, D., Blanc-Benon, P. and Jaufret, C. 1988. “Target Motion Analysis With Bearings And Frequencies Measurements,” Twenty-Second Asilomar Conference on Signals, Systems and Computers, 1(October): 458–462, doi: 10.1109/ACSSC.1988.754037.PasserieuxJ. M.PillonD.Blanc-BenonP.JaufretC.1988“Target Motion Analysis With Bearings And Frequencies Measurements,”Twenty-Second Asilomar Conference on Signals, Systems and Computers1(October):458462doi:10.1109/ACSSC.1988.754037Open DOISearch in Google Scholar

Payne, A. N. 1989. “Observability problem for bearings-only tracking,” International Journal of Control 49(3): 761–768, doi: 10.1080/00207178908559665.PayneA. N.1989“Observability problem for bearings-only tracking,”International Journal of Control49(3):761768doi:10.1080/00207178908559665Open DOISearch in Google Scholar

Pham, H., Smolka, S. A., Stoller, S. D., Phan, D. and Yang, J. 2015. “A survey on unmanned aerial vehicle collision avoidance systems,” Available at: https://arxiv.org/abs/1508.07723 (accessed August 12, 2020).PhamH.SmolkaS. A.StollerS. D.PhanD.YangJ.2015“A survey on unmanned aerial vehicle collision avoidance systems,”Available at:https://arxiv.org/abs/1508.07723(accessed August 12, 2020)Search in Google Scholar

Pillon, D., Perez-Pignol, A. and Jauffret, C. 2016. “Observability: Range-only vs. bearings-only target motion analysis for a leg-by-leg observer’s trajectory,” IEEE Transactions on Aerospace and Electronic Systems 52(4): 1667–1678, doi: 10.1109/TAES.2016.150016.PillonD.Perez-PignolA.JauffretC.2016“Observability: Range-only vs. bearings-only target motion analysis for a leg-by-leg observer’s trajectory,”IEEE Transactions on Aerospace and Electronic Systems52(4):16671678doi:10.1109/TAES.2016.150016Open DOISearch in Google Scholar

Piriyajitakonkij, M., Warin, P., Lakhan, P., Leelaarporn, P., Kumchaiseemak, N., Suwajanakorn, S., Pianpanit, T., Niparnan, N., Mukhopadhyay, S. C. and Wilaiprasitporn, T. 2020. “SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB,” IEEE Journal of Biomedical and Health Informatics 1–1, doi: 10.1109/JBHI.2020.3025900.PiriyajitakonkijM.WarinP.LakhanP.LeelaarpornP.KumchaiseemakN.SuwajanakornS.PianpanitT.NiparnanN.MukhopadhyayS. C.WilaiprasitpornT.2020“SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB,”IEEE Journal of Biomedical and Health Informatics11doi:10.1109/JBHI.2020.302590032960771Open DOISearch in Google Scholar

Quan, L., Han, L., Zhou, B., Shen, S. and Gao, F. 2020. “Survey of UAV motion planning,” IET Cyber-systems and Robotics 2(1): 14–21, doi: 10.1049/iet-csr.2020.0004.QuanL.HanL.ZhouB.ShenS.GaoF.2020“Survey of UAV motion planning,”IET Cyber-systems and Robotics2(1):1421doi:10.1049/iet-csr.2020.0004Open DOISearch in Google Scholar

Ristic, B., Arulampalm, S. and Gordon, N. 2004. Beyond the Kalman Filter Particle Filters for Tracking Applications Artech House, Boston, MA and London, Available at: https://trove.nla.gov.au/version/45133529 (Accessed September 11, 2019).RisticB.ArulampalmS.GordonN.2004Beyond the Kalman Filter Particle Filters for Tracking ApplicationsArtech HouseBoston, MA and LondonAvailable at: https://trove.nla.gov.au/version/45133529 (Accessed September 11, 2019).Search in Google Scholar

Roth, M., Hendeby, G. and Gustafsson, F. 2014. “EKF/UKF maneuvering target tracking using coordinated turn models with polar/Cartesian velocity,” in 17th International Conference on Information Fusion (FUSION), July 7–10, pp. 1–8.RothM.HendebyG.GustafssonF.2014“EKF/UKF maneuvering target tracking using coordinated turn models with polar/Cartesian velocity,”in17th International Conference on Information Fusion (FUSION)July 7–10, pp.18Search in Google Scholar

Shensa, M. J. 1981. “On the uniqueness of Doppler tracking,” The Journal of the Acoustical Society of America 70(4): 1062–1064, doi: 10.1121/1.386550.ShensaM. J.1981“On the uniqueness of Doppler tracking,”The Journal of the Acoustical Society of America70(4):10621064doi:10.1121/1.386550Open DOISearch in Google Scholar

Skaria, S., Al-Hourani, A. and Evans, R. J. 2020. “Deep-Learning Methods for Hand-Gesture Recognition Using Ultra-Wideband Radar,” IEEE Access 8: 203 580–203 590, doi: 10.1109/ACCESS.2020.3037062.SkariaS.Al-HouraniA.EvansR. J.2020“Deep-Learning Methods for Hand-Gesture Recognition Using Ultra-Wideband Radar,”IEEE Access8203 580203 590doi:10.1109/ACCESS.2020.3037062Open DOISearch in Google Scholar

Skaria, S., Al-Hourani, A., Lech, M. and Evans, R. J. 2019. “Hand-Gesture Recognition Using Two-Antenna Doppler Radar With Deep Convolutional Neural Networks,” IEEE Sensors Journal 19(8): 3041–3048, doi: 10.1109/JSEN.2019.2892073.SkariaS.Al-HouraniA.LechM.EvansR. J.2019“Hand-Gesture Recognition Using Two-Antenna Doppler Radar With Deep Convolutional Neural Networks,”IEEE Sensors Journal19(8):30413048doi:10.1109/JSEN.2019.2892073Open DOISearch in Google Scholar

Skolnik, M. 2001. Introduction to Radar Systems, ser. Electrical Engineering Series McGraw-Hill, Available at: https://books.google.com.au/books?id=Y6-APwAACAAJ.SkolnikM.2001Introduction to Radar Systems, ser. Electrical Engineering SeriesMcGraw-HillAvailable athttps://books.google.com.au/books?id=Y6-APwAACAAJ.Search in Google Scholar

Walker, O., Vanegas, F., Gonzalez, F. and Koenig, S. 2019. A Deep Reinforcement Learning Framework for UAV Navigation in Indoor Environments,” 2019 IEEE Aerospace Conference, March, pp. 1–14. doi: 10.1109/AERO.2019.8742226.WalkerO.VanegasF.GonzalezF.KoenigS.2019A Deep Reinforcement Learning Framework for UAV Navigation in Indoor Environments,”2019 IEEE Aerospace ConferenceMarch, pp.114doi:10.1109/AERO.2019.8742226Open DOISearch in Google Scholar

eISSN:
1178-5608
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Engineering, Introductions and Overviews, other