Cite

Brown, M. Z., Burschka, D. and Hager, G. D.. 2003. Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 25 8: 993–1008, http://doi.ieeecomputersociety.org/10.1109/TPAMI.2003.1217603. Brown M. Z. Burschka D. and Hager G. D. 2003 Advances in computational stereo IEEE Transactions on Pattern Analysis and Machine Intelligence 25 8 993 1008 http://doi.ieeecomputersociety.org/10.1109/TPAMI.2003.1217603 10.1109/TPAMI.2003.1217603 Search in Google Scholar

Cai, Z., et al.. 2016. Structured light field 3D imaging. Optics Express 24 18: 20324–20334, https://doi.org/10.1364/OE.24.020324. Cai Z. 2016 Structured light field 3D imaging Optics Express 24 18 20324 20334 https://doi.org/10.1364/OE.24.020324 27607639 Search in Google Scholar

Cai, Z., et al.. 2018. Ray calibration and phase mapping for structured-light-field 3D reconstruction. Optics Express 26 6: 7598–7613, https://doi.org/10.1364/OE.26.007598. Cai Z. 2018 Ray calibration and phase mapping for structured-light-field 3D reconstruction Optics Express 26 6 7598 7613 https://doi.org/10.1364/OE.26.007598 29609313 Search in Google Scholar

Chen, C. - Y., Yang, T.-T. and Sun, W.-S.. 2008. Optics system design applying a micro-prism array of a single lens stereo image pair. Optics Express 16 20: 15495–15505, https://doi.org/10.1364/OE.16.015495. Chen C. - Y. Yang T.-T. and Sun W.-S. 2008 Optics system design applying a micro-prism array of a single lens stereo image pair Optics Express 16 20 15495 15505 https://doi.org/10.1364/OE.16.015495 Search in Google Scholar

Eznaveh, Z. S., et al.. 2017. All-fiber few-mode multicore photonic lantern mode multiplexer. Optics Express 25 14: 16701–16707, https://doi.org/10.1364/OE.25.016701. Eznaveh Z. S. 2017 All-fiber few-mode multicore photonic lantern mode multiplexer Optics Express 25 14 16701 16707 https://doi.org/10.1364/OE.25.016701 28789171 Search in Google Scholar

Fang, Z., et al.. 2017. 3D sensing techniques for multimodal data analysis and integration in smart and autonomous systems. International Conference in Communications, Signal Processing, and Systems, Springer, https://doi.org/10.1007/978-981-10-6571-2_71. Fang Z. 2017 3D sensing techniques for multimodal data analysis and integration in smart and autonomous systems International Conference in Communications, Signal Processing, and Systems, Springer https://doi.org/10.1007/978-981-10-6571-2_71 Search in Google Scholar

Hagebeuker, D.-I. B. and Marketing, P.. 2007), A 3D time of flight camera for object detection, PMD Technologies GmbH, Siegen, available at: https://pdfs.semanticscholar.org/c5a6/366b80ba9507891ca048c3a85e6253fd2260.pdf. Hagebeuker D.-I. B. and Marketing P. 2007 ), A 3D time of flight camera for object detection PMD Technologies GmbH Siegen available at: https://pdfs.semanticscholar.org/c5a6/366b80ba9507891ca048c3a85e6253fd2260.pdf Search in Google Scholar

Han, J., et al.. 2013. Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Transactions on Cybernetics 43 5: 1318–1334, doi: 10.1109/TCYB.2013.2265378. Han J. 2013 Enhanced computer vision with Microsoft Kinect sensor: a review IEEE Transactions on Cybernetics 43 5 1318 1334 , doi: 10.1109/TCYB.2013.2265378 23807480 Open DOISearch in Google Scholar

Huang, X., et al.. 2017. Target enhanced 3D reconstruction based on polarization-coded structured light. Optics Express 25 2: 1173–1184, https://doi.org/10.1364/OE.25.001173. Huang X. 2017 Target enhanced 3D reconstruction based on polarization-coded structured light Optics Express 25 2 1173 1184 https://doi.org/10.1364/OE.25.001173 28158002 Search in Google Scholar

Lussana, R., et al.. 2015. Enhanced single-photon time-of-flight 3D ranging. Optics Express 23 19: 24962–24973, https://doi.org/10.1364/OE.23.024962. Lussana R. 2015 Enhanced single-photon time-of-flight 3D ranging Optics Express 23 19 24962 24973 https://doi.org/10.1364/OE.23.024962 26406696 Search in Google Scholar

Mohanty, L. and Kuang, K. S.. 2011. Surface structure monitoring with plastic optical fiber. Optics and Lasers in Engineering 49 7: 984–987, https://doi.org/10.1016/j.optlaseng.2011.01.028. Mohanty L. and Kuang K. S. 2011 Surface structure monitoring with plastic optical fiber Optics and Lasers in Engineering 49 7 984 987 https://doi.org/10.1016/j.optlaseng.2011.01.028 Search in Google Scholar

Nan-Nan, Z. and Jun, Z.. 2016. Surface roughness measurement based on fiber optic sensor. Measurement 86: 239–245, https://doi.org/10.1016/j.measurement.2016.02.051. Nan-Nan Z. and Jun Z. 2016 Surface roughness measurement based on fiber optic sensor Measurement 86 239 245 https://doi.org/10.1016/j.measurement.2016.02.051 Search in Google Scholar

Sabri, N., et al.. 2015. Fiber optic sensors: short review and applications”, Recent trends in physics of material science and technology, Springer: 299–311, https://doi.org/10.1007/978-981-287-128-2_19. Sabri N. 2015 Fiber optic sensors: short review and applications ”, Recent trends in physics of material science and technology Springer 299 311 https://doi.org/10.1007/978-981-287-128-2_19 Search in Google Scholar

Salvi, J., et al.. 2010. A state of the art in structured light patterns for surface profilometry. Pattern Recognition 43 8: 2666–2680, https://doi.org/10.1016/j.patcog.2010.03.004. Salvi J. 2010 A state of the art in structured light patterns for surface profilometry Pattern Recognition 43 8 2666 2680 https://doi.org/10.1016/j.patcog.2010.03.004 Search in Google Scholar

Sandoz, P., et al.. 2010. 3D localization of a labeled target by means of a stereo vision configuration with subvoxel resolution. Optics Express 18 23: 24152–24162, https://doi.org/10.1364/OE.18.024152. Sandoz P. 2010 3D localization of a labeled target by means of a stereo vision configuration with subvoxel resolution Optics Express 18 23 24152 24162 https://doi.org/10.1364/OE.18.024152 21164761 Search in Google Scholar

Sarbolandi, H., Lefloch, D. and Kolb, A.. 2015. Kinect range sensing: structured-light versus time-of-flight Kinect. Computer Vision and Image Understanding 139: 1–20, https://doi.org/10.1016/j.cviu.2015.05.006. Sarbolandi H. Lefloch D. and Kolb A. 2015 Kinect range sensing: structured-light versus time-of-flight Kinect Computer Vision and Image Understanding 139 1 20 https://doi.org/10.1016/j.cviu.2015.05.006 Search in Google Scholar

Van der Jeught, S. and Dirckx, J. J.. 2016. Real-time structured light profilometry: a review. Optics and Lasers in Engineering 87: 18–31, https://doi.org/10.1016/j.optlaseng.2016.01.011. Van der Jeught S. and Dirckx J. J. 2016 Real-time structured light profilometry: a review Optics and Lasers in Engineering 87 18 31 https://doi.org/10.1016/j.optlaseng.2016.01.011 Search in Google Scholar

Wang, Y., et al.. 2018. 3D printed fiber optic faceplates by custom controlled fused deposition modeling. Optics Express 26 12: 15362–15376, https://doi.org/10.1364/OE.26.015362. Wang Y. 2018 3D printed fiber optic faceplates by custom controlled fused deposition modeling Optics Express 26 12 15362 15376 https://doi.org/10.1364/OE.26.015362 600568030114785 Search in Google Scholar

Wheaton, S., et al.. 2017. Open architecture time of fight 3D SWIR camera operating at 150 MHz modulation frequency. Optics Express 25 16: 19291–19297, https://doi.org/10.1364/OE.25.019291. Wheaton S. 2017 Open architecture time of fight 3D SWIR camera operating at 150 MHz modulation frequency Optics Express 25 16 19291 19297 https://doi.org/10.1364/OE.25.019291 29041122 Search in Google Scholar

Wu, T. T. and Qu, J. Y.. 2007. Optical imaging for medical diagnosis based on active stereo vision and motion tracking. Optics Express 15 16: 10421–10426, https://doi.org/10.1364/OE.15.010421. Wu T. T. and Qu J. Y. 2007 Optical imaging for medical diagnosis based on active stereo vision and motion tracking Optics Express 15 16 10421 10426 https://doi.org/10.1364/OE.15.010421 19547394 Search in Google Scholar

Xu, D., Zhou, W. and Peng, L.. 2017. Three-dimensional live multi-label light-sheet imaging with synchronous excitation-multiplexed structured illumination. Optics Express 25 25: 31159–31173, https://doi.org/10.1364/OE.25.031159. Xu D. Zhou W. and Peng L. 2017 Three-dimensional live multi-label light-sheet imaging with synchronous excitation-multiplexed structured illumination Optics Express 25 25 31159 31173 https://doi.org/10.1364/OE.25.031159 594199129245793 Search in Google Scholar

Zanuttigh, P., et al. (Eds), (2016), Time-of-flight and structured light depth cameras, Springer, doi: 10.1007/978-3-319-30973-6. Zanuttigh P. (Eds), ( 2016 ), Time-of-flight and structured light depth cameras Springer , doi: 10.1007/978-3-319-30973-6 Open DOISearch in Google Scholar

Zhang, S.. 2018. High-speed 3D shape measurement with structured light methods: a review. Optics and Lasers in Engineering 106: 119–131, https://doi.org/10.1016/j.optlaseng.2018.02.017. Zhang S. 2018 High-speed 3D shape measurement with structured light methods: a review Optics and Lasers in Engineering 106 119 131 https://doi.org/10.1016/j.optlaseng.2018.02.017 Search in Google Scholar

Zhou, P., Zhu, J. and Jing, H.. 2018. Optical 3D surface reconstruction with color binary speckle pattern encoding. Optics Express 26 3: 3452–3465, https://doi.org/10.1364/OE.26.003452. Zhou P. Zhu J. and Jing H. 2018 Optical 3D surface reconstruction with color binary speckle pattern encoding Optics Express 26 3 3452 3465 https://doi.org/10.1364/OE.26.003452 29401873 Search in Google Scholar

eISSN:
1178-5608
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Engineering, Introductions and Overviews, other